3 resultados para Restriction fragment length polymorphisms

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43∈±∈15.8 years, BMI 24.3∈±∈2.9 kg/m2). Data showed significant correlations between log-transformed relative telomere length and the following: age (p∈<∈0.001), height (p∈=∈0.045), total body fat percentage (p∈=∈0.031), abdominal fat percentage (p∈=∈0.038) , visceral fat level (p∈<∈0.001), plasma leptin (p∈=∈0.029) and plasma irisin (p∈=∈0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b∈=∈-0.00735, p∈=∈0.001) and plasma irisin levels (b∈=∈0.04527, p∈=∈0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process. © 2014 The Author(s).