16 resultados para Residual lifetime
em Aston University Research Archive
Resumo:
This paper reports on preliminary findings of a study conducted in the Black Country area of the west midlands of England. The small number of linguistic studies carried out in this region in the last 40 years have not found evidence of the continuing existence of variable rhoticity in the local speech variety. The Survey of English Dialects in the 1950s found low levels of rhoticity among speakers in the location closest to the Black Country, and I examine here similar findings from a detailed study of the variety, carried out between 2003-2006.
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
Native speakers learn their mother tongue slowly, from birth, by the constant repetition of common words and phrases in a variety of contexts and situations, within the language community. As foreign language learners, we face considerable disadvantages when compared to children learning their mother tongue. Foreign language learners start later in life, have less time, have fewer opportunities to experience the language, and learn in the restricted environment of the classroom. Teachers and books give us information about many words and phrases, but it is difficult for us to know what we need to focus on and learn thoroughly, and what is less important. The rules and explanations are often difficult for us to understand. A large language corpus represents roughly the amount and variety of language that a native-speaker experiences in a whole lifetime. Learners can now access language corpora. We can check which words and phrases are important, and quickly discover their common meanings, collocations, and structural patterns. It is easier to remember things that we find out ourselves, rather than things that teachers or books tell us. Each click on the computer keyboard can show us the same information in different ways, so we can understand it more easily. We can also get many more examples from a corpus. Teachers and native-speakers can also use corpora, to confirm and enhance their own knowledge of a language, and prepare exercises to guide their students. Each of us can learn at our own level and at our own speed.
Resumo:
The bleaching of the n = 1 heavy-hole and light-hole exciton absorption has been studied at room temperature and zero bias in a strain-balanced InGaAs/InAsP multiple quantum well. Pump-probe spectroscopy was used to measure the decay of the light-hole absorption saturation, giving a hole lifetime of only 280 ps. As only 16 meV separates the light- and heavy-hole bands, the short escape time can be explained by thermalization between these bands followed by thermionic emission over the heavy-hole barrier. The saturation density was estimated to be 1 × 1016 cm-3; this is much lower than expected for tensile-strained wells where both heavy and light holes have large in-plane masses. © 1998 American Institute of Physics.
Resumo:
Residual current-operated circuit-breakers (RCCBs) have proved useful devices for the protection of both human beings against ventricular fibrillation and installations against fire. Although they work well with sinusoidal waveforms, there is little published information on their characteristics. Due to shunt connected non-linear devices, not the least of which is the use of power electronic equipment, the supply is distorted. Consequently, RCCBs as well as other protection relays are subject to non-sinusoidal current waveforms. Recent studies showed that RCCBs are greatly affected by harmonics, however the reasons for this are not clear. A literature search has also shown that there are inconsistencies in the analysis of the effect of harmonics on protection relays. In this work, the way RCCBs operate is examined, then a model is built with the aim of assessing the effect of non-sinusoidal current on RCCBs. Tests are then carried out on a number of RCCBs and these, when compared with the results from the model showed good correlation. In addition, the model also enables us to explain the RCCBs characteristics for pure sinusoidal current. In the model developed, various parameters are evaluated but special attention is paid to the instantaneous value of the current and the tripping mechanism movement. A similar assessment method is then used to assess the effect of harmonics on two types of protection relay, the electromechanical instantaneous relay and time overcurrent relay. A model is built for each of them which is then simulated on the computer. Tests results compare well with the simulation results, and thus the model developed can be used to explain the relays behaviour in a harmonics environment. The author's models, analysis and tests show that RCCBs and protection relays are affected by harmonics in a way determined by the waveform and the relay constants. The method developed provides a useful tool and the basic methodology to analyse the behaviour of RCCBs and protection relays in a harmonics environment. These results have many implications, especially the way RCCBs and relays should be tested if harmonics are taken into account.
Resumo:
The aim of this study was to determine whether an ophthalmophakometric technique could offer a feasible means of investigating ocular component contributions to residual astigmatism in human eyes. Current opinion was gathered on the prevalence, magnitude and source of residual astigmatism. It emerged that a comprehensive evaluation of the astigmatic contributions of the eye's internal ocular surfaces and their respective axial separations (effectivity) had not been carried out to date. An ophthalmophakometric technique was developed to measure astigmatism arising from the internal ocular components. Procedures included the measurement of refractive error (infra-red autorefractometry), anterior corneal surface power (computerised video keratography), axial distances (A-scan ultrasonography) and the powers of the posterior corneal surface in addition to both surfaces of the crystalline lens (multi-meridional still flash ophthalmophakometry). Computing schemes were developed to yield the required biometric data. These included (1) calculation of crystalline lens surface powers in the absence of Purkinje images arising from its anterior surface, (2) application of meridional analysis to derive spherocylindrical surface powers from notional powers calculated along four pre-selected meridians, (3) application of astigmatic decomposition and vergence analysis to calculate contributions to residual astigmatism of ocular components with obliquely related cylinder axes, (4) calculation of the effect of random experimental errors on the calculated ocular component data. A complete set of biometric measurements were taken from both eyes of 66 undergraduate students. Effectivity due to corneal thickness made the smallest cylinder power contribution (up to 0.25DC) to residual astigmatism followed by contributions of the anterior chamber depth (up to 0.50DC) and crystalline lens thickness (up to 1.00DC). In each case astigmatic contributions were predominantly direct. More astigmatism arose from the posterior corneal surface (up to 1.00DC) and both crystalline lens surfaces (up to 2.50DC). The astigmatic contributions of the posterior corneal and lens surfaces were found to be predominantly inverse whilst direct astigmatism arose from the anterior lens surface. Very similar results were found for right versus left eyes and males versus females. Repeatability was assessed on 20 individuals. The ophthalmophakometric method was found to be prone to considerable accumulated experimental errors. However, these errors are random in nature so that group averaged data were found to be reasonably repeatable. A further confirmatory study was carried out on 10 individuals which demonstrated that biometric measurements made with and without cycloplegia did not differ significantly.
Resumo:
It has often been found that corneal astigmatism exceeds the amount exhibited by the eye as a whole. This difference is usually referred to as residual astigmatism. Scrutiny of the studies of corneal astigmatismreveal that what has actually been measured is the astigmatic contributionof the anterior corneal surface alone. This anterior surface is easily measured whereas measurement of the posterior corneal surface is much more difficult. A method was therefore developed to measure the radius and toricity of the posterior corneal surface. The method relies upon photography of the first and second Purkinje images in three fixed meridians. Keratometry, comparison of anterior and posterior corneal Purkinje images and pachometricdata were applied to three meridional analysis equations, allowing the posterior corneal surface to be described in sphero-cylindrical form. Measurements were taken from 80 healthy subjects from two distinct age groups. The first consisted of 60 young subjects, mean age 22.04 years and the second consisted of 20 old subjects, mean age 74.64 years. The young group consisted of 28 myopes, 24 emmetropes and 8 hyperopes. The old group consisted of 6 myopes and 14 hyperopes. There was an equal number of males and females in each group. These groupings allowed the study of the effects of age, ametropia and gender on the posterior corneal toricity. The effect of the posterior corneal surface on residual astigmatism was assessed and was found to cause an overall reduction. This reduction was due primarily to the posterior corneal surface being consistently steeper relative to the anterior surface in the vertical meridian compared to the horizontal meridian.
Resumo:
This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The surface residual stresses in SiC particle-reinforced Al matrix composites are measured using a recently developed nanoindentation technique. The tensile biaxial residual stress in Al is found to increase with the particle concentration. The stress magnitudes are in reasonable agreement with those from numerical modeling.
Resumo:
The effects of a thermal residual stress field on fatigue crack growth in a silicon carbide particle-reinforced aluminum alloy have been measured. Stress fields were introduced into plates of material by means of a quench from a solution heat-treatment temperature. Measurements using neutron diffraction have shown that this introduces an approximately parabolic stress field into the plates, varying from compressive at the surfaces to tensile in the center. Long fatigue cracks were grown in specimens cut from as-quenched plates and in specimens which were given a stress-relieving overaging heat treatment prior to testing. Crack closure levels for these cracks were determined as a function of the position of the crack tip in the residual stress field, and these are shown to differ between as-quenched and stress-relieved samples. By monitoring the compliance of the specimens during fatigue cycling, the degree to which the residual stresses close the crack has been evaluated. © 1995 The Minerals, Metals & Material Society.
Resumo:
The effect of residual stresses, induced by cold water quenching, on the morphology of fatigue crack fronts has been investigated in a powder metallurgy 8090 aluminium alloy, with and without reinforcement in the form of 20 wt-%SiC particles. Residual stress measurements reveal that the surface compressive stresses developed in these materials are significantly greater than in conventional metallurgy ingot 8090, because surface yielding occurs on quenching. The yield stresses of the powder route materials are greater than those of ingot produced 8090 and hence greater surface stresses can be maintained. In fatigue, severe crack front bowing is observed in the powder formed materials as a result of the reduction of the R ratio (minimum load/maximum load) by the compressive residual stresses at the sides of the specimen, causing premature crack closure and hence reducing the local driving force for fatigue crack growth ΔKeff. This distortion of the crack fronts introduces large errors into measurements of crack growth rate and threshold values of ΔK.
Crack closure and residual stress effects in fatigue of a particle-reinforced metal matrix composite
Resumo:
A study of the influence of macroscopic quenching stresses on long fatigue crack growth in an aluminium alloy-SiC composite has been made. Direct comparison between quenched plate, where high residual stresses are present, and quenched and stretched plate, where they have been eliminated, has highlighted their rôle in crack closure. Despite similar strength levels and identical crack growth mechanisms, the stretched composite displays faster crack growth rates over the complete range of ΔK, measured at R = 0.1, with threshold being displaced to a lower nominal ΔK value. Closure levels are dependent upon crack length, but are greater in the unstretched composite, due to the effect of surface compressive stresses acting to close the crack tip. These result in lower values of ΔKeff in the unstretched material, explaining the slower crack growth rates. Effective ΔKth values are measured at 1.7 MPa√m, confirmed by constant Kmax testing. In the absence of residual stress, closure levels of approximately 2.5 MPa√m are measured and this is attributed to a roughness mechanism.
Resumo:
The fatigue crack propagation behaviour of a low alloy, boron-containing steel has been examined after austenitizing at 900°C or 1250°C and tempering at a range of temperatures up to 400°C. Fatigue threshold values were found to vary with austenitizing and tempering treatment in a range between 3.3 to 6 MPa √m when tested at a stress ratio (R) of 0.2. Crack propagation rates in the Paris regime were insensitive to heat treatment variations. The crack propagation path was essentially transgranular in all conditions with small regions of intergranular facets appearing at growth rates around the knee of the da/dN vs ΔK curve. The crack front shape showed marked retardation in the centre of the specimen at low tempering temperatures. Experimental determinations and computer predictions of residual stress levels in the specimens indicated that this was due to a central residual compressive stress resulting from differential cooling rates and the volume change associated with the martensite transformation. The results are discussed in terms of microstructural and residual stress effects on fatigue behaviour. © 1987.
Resumo:
The fatigue-crack propagation and threshold behaviour of a C-Mn steel containing boron has been investigated at a range of strength levels suitable for mining chain applications. The heat-treatment variables examined include two austenitizing temperatures (900 degree C and 1250 degree C) and a range of tempering treatments from the as-quenched condition to tempering at 400 degree C. In mining applications the haulage chains undergo a 'calibration' process which has the effect of imposing a tensile prestrain on the chain links before they go into service. Prestrain is shown to reduce threshold values in these steels and this behaviour is related to its effects on the residual stress distribution in the test specimens.