2 resultados para Residual biomass

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review covers the production and utilisation of liquids from the thermal processing of biomass and related materials to substitute for synthetic phenol and formaldehyde in phenol formaldehyde resins. These resins are primarily employed in the manufacture of wood panels such as plywood, MDF, particle-board and OSB. The most important thermal conversion methods for this purpose are fast pyrolysis and vacuum pyrolysis, pressure liquefaction and phenolysis. Many feedstocks have been tested for their suitability as sources of phenolics including hard and softwoods, bark and residual lignins. Resins have been prepared utilising either the whole liquid product, or a phenolics enriched fraction obtained after fractional condensation or further processing, such as solvent extraction. None of the phenolics production and fractionation techniques covered in this review are believed to allow substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum derived phenol. This survey shows that considerable progress has been made towards reaching the goal of a price competitive renewable resin, but that further research is required to meet the twin challenges of low renewable resin cost and satisfactory quality requirements. Particular areas of concern are wood panel press times, variability of renewable resin properties, odour, lack of reactive sites compared to phenol and potential for increased emissions of volatile organic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.