4 resultados para Representação social - Social representation

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social Media is becoming an increasingly important part of people’s lives and is being used increasingly in the food and agriculture sector. This paper considers the extent to which each section of the food supply chain is represented in Twitter and use the hashtag #food. We looked at the 20 most popular words for each part of the supply chain by categorising 5000 randomly selected tweets to different sections of the food chain and then analysing each category. We sorted the users by those who tweeted most frequently and categorised their position in the food supply chain. Finally to consider the indegree of influence, we took the top 100 tweeters from the previous list and consider what following these users have. From this we found that consumers are the most represented area of the food chain, and logistics is the least represented. Consumers had 51.50% of the users and 87.42% of the top words tweeted from that part of the food chain. We found little evidence of logistics representation for either tweets or users (0.84% and 0.35% respectively). The top users were found to follow a high percentage of their own followers with most having over 70% the same. This research will bring greater understanding of how people perceive the food sector and how Twitter can be used within this sector.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The assertion about the peculiarly intricate and complex character of social phenomena has, in much of social discourse, a virtually uncontested tradition. A significant part of the premise about the complexity of social phenomena is the conviction that it complicates, perhaps even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We refer to one of the most prominent and politically influential social scientific theories, John Maynard Keynes' economic theory as an illustration. We conclude that, the practical value of social scientific knowledge is not necessarily dependent on a faithful, in the sense of complete, representation of (complex) social reality. Practical knowledge is context sensitive if not project bound. Social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of practical social situations that can be altered or are actionable by relevant actors. This chapter represents an effort to re-examine the relation between social reality, social scientific knowledge and its practical application. There is a widely accepted view about the potential social utility of social scientific knowledge that invokes the peculiar complexity of social reality as an impediment to good theoretical comprehension and hence to its applicability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In recent years, the boundaries between e-commerce and social networking have become increasingly blurred. Many e-commerce websites support the mechanism of social login where users can sign on the websites using their social network identities such as their Facebook or Twitter accounts. Users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation, which aims to recommend products from e-commerce websites to users at social networking sites in 'cold-start' situations, a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites (users who have social networking accounts and have made purchases on e-commerce websites) as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations (called user embeddings and product embeddings, respectively) from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the largest Chinese microblogging service Sina Weibo and the largest Chinese B2C e-commerce website JingDong have shown the effectiveness of our proposed framework.