5 resultados para Renormalization group

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations, which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in a rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied low-temperature properties of interacting electrons in a one-dimensional quantum wire (Luttinger liquid) side-hybridized with a single-level impurity. The hybridization induces a backscattering of electrons in the wire which strongly affects its low-energy properties. Using a one-loop renormalization group approach valid for a weak electron-electron interaction, we have calculated a transmission coefficient through the wire, T(epsilon), and a local density of states, nu(epsilon) at low energies epsilon. In particular, we have found that the antiresonance in T(epsilon) has a generalized Breit-Wigner shape with the effective width Gamma(epsilon) which diverges at the Fermi level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in the rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a Luttinger liquid (LL) coupled to a generic environment consisting of bosonic modes with arbitrary density-density and current-current interactions. The LL can be either in the conducting phase and perturbed by a weak scatterer or in the insulating phase and perturbed by a weak link. The environment modes can also be scattered by the imperfection in the system with arbitrary transmission and reflection amplitudes. We present a general method of calculating correlation functions under the presence of the environment and prove the duality of exponents describing the scaling of the weak scatterer and of the weak link. This duality holds true for a broad class of models and is sensitive to neither interaction nor environmental modes details, thus it shows up as the universal property. It ensures that the environment cannot generate new stable fixed points of the renormalization group flow. Thus, the LL always flows toward either conducting or insulating phase. Phases are separated by a sharp boundary which is shifted by the influence of the environment. Our results are relevant, for example, for low-energy transport in (i) an interacting quantum wire or a carbon nanotube where the electrons are coupled to the acoustic phonons scattered by the lattice defect; (ii) a mixture of interacting fermionic and bosonic cold atoms where the bosonic modes are scattered due to an abrupt local change of the interaction; (iii) mesoscopic electric circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.