29 resultados para Redox capacitance
em Aston University Research Archive
Resumo:
DNA is susceptible to damage by reactive oxygen species (ROS). ROS are produced during normal and pathophysiological processes in addition to ionizing radiation, environmental mutagens, and carcinogens. 8-oxo-2′-deoxyguanosine (8-oxodG) is probably one of the most abundant DNA lesion formed during oxidative stress. This potentially mutagenic lesion causes G → T transversions and is therefore an important candidate lesion for repair, particularly in mammalian cells. Several pathways exist for the removal, or repair, of this lesion from mammalian DNA. The most established is via the base excision repair enzyme, human 8-oxoguanine glycosylase (hOgg1), which acts in combination with the human apurinic endonuclease (hApe). The latter is known to respond to regulation by redox reactions and may act in combination with hOgg1. We discuss evidence in this review article concerning alternative pathways in humans, such as nucleotide excision repair (NER), which could possibly remove the 8-oxodG lesion. We also propose that redox-active components of the diet, such as vitamin C, may promote such repair, affecting NER specifically. © 2002 Elsevier Science Inc.
Resumo:
Reactive oxygen species are recognised as important signalling molecules within cells of the immune system. This is, at least in part, due to the reversible activation of kinases, phosphatases and transcription factors by modification of critical thiol residues. However, in the chronic inflammatory disease rheumatoid arthritis, cells of the immune system are exposed to increased levels of oxidative stress and the T cell becomes refractory to growth and death stimuli. This contributes to the perpetuation of the immune response. As many of the effective therapies used in the treatment of rheumatoid arthritis modulate intracellular redox state, this raises the question of whether increased oxidative stress is causative of T-cell hyporesponsiveness. To address this hypothesis, this review considers the putative sources of ROS involved in normal intracellular signalling in T cells and the evidence in support of abnormal ROS fluxes contributing to T-cell hyporesponsiveness. © W. S. Maney & Son Ltd.
Resumo:
Reactive oxygen species (ROS) and ceramide are each partly responsible for the signal transduction of a variety of extracellular agents. Furthermore, the application of synthetic, short-chain ceramides mimics the cellular responses to these extracellular agents. However, the significance of ROS involvement in ceramide signaling pathways is poorly understood. Here we describe that the (cellular responses to C2-/C6-ceramide of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells are preceded by a rise in mitochondrial peroxide production. In Jurkat T-cells, this is associated with a large time- and dose-dependent loss of cellular glutathione. However, in U937 monocytes, glutathione loss is transient. Differences in the magnitude and kinetics of this alteration in cellular redox state associate with discrete outcomes, namely growth arrest or apoptosis. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
During chronic inflammation and ageing, the increase in oxidative stress in both intracellular and extracellular compartments is likely to influence local cell functions. Redox changes alter the T-cell proteome in a quantitative and qualitative manner, and post-translational modifications to surface and cytoplasmic proteins by increased reactive species can influence T-cell function. Previously, we have shown that RA (rheumatoid arthritis) T-cells exhibit reduced ROS (reactive oxygen species) production in response to extracellular stimulation compared with age-matched controls, and basal ROS levels [measured as DCF (2',7'-dichlorofluorescein) fluorescence] are lower in RA T-cells. In contrast, exposing T-cells in vitro to different extracellular redox environments modulates intracellular signalling and enhances cytokine secretion. Together, these data suggest that a complex relationship exists between intra- and extra-cellular redox compartments which contribute to the T-cell phenotype.
Resumo:
A series of bis-salicylidene based N2S2 copper macrocycles were prepared, structurally characterised and subjected to electrochemical analysis. The aim was to investigate the effects of length of polymethylene chains between either the imine donors or the sulfur donors on redox state and potential of the metal. The complexes structurally characterised had either distorted square planar or tetrahedral geometries depending on their oxidation state (Cu2+ or Cu+, respectively), and the N-(CH2)n-N bridge was found to be most critical moiety in determining the redox potential and oxidation state of the copper macrocycles, with relatively little change in these properties caused by lengthening the S-(CH2)n-S bridge from two to three carbons. In fact, a weakness was observed in the complexes at the sulfur donor, as further lengthening of the S-(CH2)n-S methylene bridge to four carbons caused fission of the carbon-sulfur bond to give dimeric rings and supramolecular assemblies. Cu+ complexes could be oxidised to Cu2+ by tert-butylhydroperoxide, with a corresponding change in the spectrophotometric properties, and likewise Cu2+ complexes could be reduced to Cu+ by treatment with ß-mercaptoethylamine. However, repeated redox cycles appeared to compromise the stability of the macrocycles, most probably by a competing oxidation of the ligand. Thus the copper N2S2 macrocycles show potential as redox sensors, but further development is required to improve their performance in a biochemical environment.
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
Resumo:
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Resumo:
It is now recognised that redox control of proteins plays an important role in many signalling pathways both in health and disease. Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while the reversible modifications are thought to be most important in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM (chlorination, nitration, etc.), and the susceptibilities of residues vary depending on their structural location. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to the disulfide, glutathionylated or sulfenic acid forms, but there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. Well understood examples of oxidative regulation include protein tyrosine phosphatases, e.g. PTP1B/C, and members of the MAPK pathways such as MEKK1 and ASK1. Transcription factors such as NFkB and Nrf-2 are also regulated by redox-active cysteines. Improved methods for analysing specific oxPTMs in biological samples are critical for understanding the physiological and pathological roles of these changes, and tandem or MS3 mass spectrometry techniques interfaced with nano-LC separation are being now used. MS3 fragmentation markers for a variety of oxidized residues including tyrosine, tryptophan and proline have been identified, and a precursor ion scanning method that allows the selective identification of these oxPTMs in complex samples has been developed. Such advances in technology offer potential for biomarker development, disease diagnosis and understanding pathology.
Resumo:
Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.
Resumo:
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
Resumo:
The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation.In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. © 2014 The Authors.
Resumo:
Electrophilic attack of hypochlorous acid on unsaturated bonds of fatty acyl chains is known to result mostly in chlorinated products that show cytotoxicity to some cell lines and were found in biological systems exposed to HOCl. This study aimed to investigate more deeply the products and the mechanism underlying cytotoxicity of phospholipid-HOCl oxidation products, synthesized by the reaction of HOCl with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonyl-phosphatidylcholine. Phospholipid chlorohydrins were found to be the most abundant among obtained products. HOCl-modified lipids were cytotoxic towards HUVEC-ST (endothelial cells), leading to a decrease of mitochondrial potential and an increase in the number of apoptotic cells. These effects were accompanied by an increase of the level of active caspase-3 and caspase-7, while the caspase-3/-7 inhibitor Ac-DEVD-CHO dramatically decreased the number of apoptotic cells. Phospholipid-HOCl oxidation products were shown to affect cell proliferation by a concentration-dependent cell cycle arrest in the G/G phase and activating redox sensitive p38 kinase. The redox imbalance observed in HUVEC-ST cells exposed to modified phosphatidylcholines was accompanied by an increase in ROS level, and a decrease in glutathione content and antioxidant capacity of cell extracts. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Phosphatase and tensin homolog (PTEN) is a redox-sensitive, dual-specificity protein phosphatase involved in regulating a number of cellular processes including metabolism, apoptosis, cell proliferation and survival. It acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of a redox regulation of PTEN downstream signaling has been reported, the effect of cellular oxidative stress or direct PTEN oxidation on the PTEN interactome is still poorly defined. To investigate this, PTEN-GST fusion protein was prepared in its reduced form and an H2O2-oxidized form that was reversible by DTT treatment, and these were immobilized on a glutathione-sepharose-based support. The immobilized protein was incubated with cell lysate to capture interacting proteins. Captured proteins were eluted from the beads, analyzed by LC-MSMS and comparatively quantified using label-free methods. After subtraction of interactors that were also present in the resin and GST controls, 97 individual protein interactors were identified, including several that are novel. Fourteen interactors that varied significantly with the redox status of PTEN were identified, including thioredoxin and peroxiredoxin-1. Except for one interactor, their binding was higher for oxidized PTEN. Using western blotting, altered binding to PTEN was confirmed for 3 selected interactors (Prdx1, Trx, and Anxa2) and DDB1 was validated as a novel interactor with unaltered binding. Our results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome which is important for the cellular function of PTEN. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.
Resumo:
Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultraendurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to copewith ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise. © The Authors Journal compilation © 2014 Biochemical Society.