3 resultados para Recycling industry--Certification
em Aston University Research Archive
Resumo:
Recycling, substitution and product life extension are identified as significant factors contributing to an extension of the time to exhaustion of industrially Dnportant materials. A quantitative assessment of the significance of virtually all materials to the U.K. is made. Copper is identified as one of the most important materials deserving of further investigation into potential resource savings through increased recycling. The other factors listed above are accounted for in the modelling technique employed. United Kingdom copper flows are qualitatively and statistically described for the years 1949 - 1976. Less accurate statistics are developed for 1922 - 1948. Adaptive expectations type causal models of total, unalloyed, and alloyed copper demand are successfully constructed and are used to generate future scenarios. Evidence is demonstrated for a break in the historical link between U.K. copper demand and industrial production. Simple causal models of potential copper scrap supply are constructed and a comparison made with actual old scrap withdrawals. Accurate adaptive expectations type models of total scrap demand are developed, but no conclusion is reached about the price elasticity of scrap demand. Various scenarios of copper goods demand are forecast and their effect on copper scrap demand. The potential to recover up to an extra 100.000 tonnes/year of generally lower grade old scrap is identified. Policy options are examined and the following recommendations made: 1) A total investment of up to £67 million in secondary refining capacity by the year 2000 is needed. 2) The copper scrap content of copper bearing goods should be specified to aid recovery. 3) A U.K. copper scrap buffer stock scheme would be advantageous for the secondary copper industry. Finally the methodology used is summarised for potential application to other materials.
Resumo:
This paper investigates the main strategies automotive companies adopt to address the issue of dealing with end-of-life vehicles and spare parts. Furthermore, it investigates the reasons behind take-back strategies, i.e how and why automotive companies undertake initiatives in reverse logistics. The research findings indicate that companies are trying to respond to the end-of-life legislation based on cost-effective approaches as well as corporate environmental responsibility. Outsourcing is used when expertise is found to extract value from scrap and there is cooperation with suppliers and vendors to facilitate the dismantling of cars and recycling of parts.
Resumo:
Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.