19 resultados para Recombinant human brain natriuretic peptide
em Aston University Research Archive
Resumo:
Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Resumo:
This work sets out to evaluate the potential benefits and pit-falls in using a priori information to help solve the Magnetoencephalographic (MEG) inverse problem. In chapter one the forward problem in MEG is introduced, together with a scheme that demonstrates how a priori information can be incorporated into the inverse problem. Chapter two contains a literature review of techniques currently used to solve the inverse problem. Emphasis is put on the kind of a priori information that is used by each of these techniques and the ease with which additional constraints can be applied. The formalism of the FOCUSS algorithm is shown to allow for the incorporation of a priori information in an insightful and straightforward manner. In chapter three it is described how anatomical constraints, in the form of a realistically shaped source space, can be extracted from a subject’s Magnetic Resonance Image (MRI). The use of such constraints relies on accurate co-registration of the MEG and MRI co-ordinate systems. Variations of the two main co-registration approaches, based on fiducial markers or on surface matching, are described and the accuracy and robustness of a surface matching algorithm is evaluated. Figures of merit introduced in chapter four are shown to given insight into the limitations of a typical measurement set-up and potential value of a priori information. It is shown in chapter five that constrained dipole fitting and FOCUSS outperform unconstrained dipole fitting when data with low SNR is used. However, the effect of errors in the constraints can reduce this advantage. Finally, it is demonstrated in chapter six that the results of different localisation techniques give corroborative evidence about the location and activation sequence of the human visual cortical areas underlying the first 125ms of the visual magnetic evoked response recorded with a whole head neuromagnetometer.
Resumo:
Cognitive systems research involves the synthesis of ideas from natural and artificial systems in the analysis, understanding, and design of all intelligent systems. This chapter discusses the cognitive systems associated with the hippocampus (HC) of the human brain and their possible role in behaviour and neurodegenerative disease. The hippocampus (HC) is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the cognitive systems of the hippocampus in humans may aid in the design of intelligent systems involved in spatial mapping, memory, and decision making. In addition, this information may lead to a greater understanding of the course of clinical dementia in the various neurodegenerative diseases in which there is significant damage to the HC.
Resumo:
Over 50% of clinically-marketed drugs target membrane proteins; in particular G protein-coupled receptors (GPCRs). GPCRs are vital to living cells, performing an active role in many processes, making them integral to drug development. In nature, GPCRs are not sufficiently abundant for research and their structural integrity is often lost during extraction from cell membranes. The objectives of this thesis were to increase recombinant yield of the GPCR, human adenosine A2A receptor (hA2AR) by investigating bioprocess conditions in large-scale Pichia pastoris and small-scale Saccharomyces cerevisiae cultivations. Extraction of hA2AR from membranes using novel polymers was also investigated. An increased yield of hA2AR from P. pastoris was achieved by investigating the methanol feeding regime. Slow, exponential feed during induction (μlow) was compared to a faster, exponential feed (μhigh) in 35 L pilot-scale bioreactors. Overall hA2AR yields were increased for the μlow cultivation (536.4pmol g-1) compared to the μhigh148.1 pmol g-1. hA2AR levels were maintained in cytotoxic methanol conditions and unexpectedly, pre-induction levels of hA2AR were detected. Small-scale bioreactor work showed that Design of Experiments (DoE) could be applied to screen for bioprocess conditions to give optimal hA2AR yields. Optimal conditions were retrieved for S. cerevisiae using a d-optimal screen and response surface methodology. The conditions were 22°C, pH 6.0, 30% DO without dimethyl sulphoxide. A polynomial equation was generated to predict hA2AR yields if conditions varied. Regarding the extraction, poly (maleic anhydride-styrene) or PMAS was successful in solubilising hA2AR from P. pastoris membranes compared with dodcecyl-β-D-maltoside (DDM) detergent. Variants of PMAS worked well as solubilising agents with either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or cholesteryl hemisuccinate (CHS). Moreover, esterification of PMAS improved solubilisation, suggesting that increased hydrophobicity stabilises hA2AR during extraction. Overall, hA2AR yields were improved in both, P. pastoris and S. cerevisiae and the use of novel polymers for efficient extraction was achieved.
Resumo:
Recombinant human DNase (rhDNase) is an established treatment in cystic fibrosis (CF), but it may liberate cationic mediators bound to DNA in the airways. An alternative mucolytic therapy is hypertonic saline (HS); however, HS may potentiate neutrophilic inflammation. We compared the effect of rhDNase and HS on cationic proinflammatory mediators in CF sputum. In a randomized, crossover trial, 48 children with CF were allocated consecutively to 12 weeks of once-daily 2.5 mg rhDNase, alternate-day 2.5 mg rhDNase, and twice-daily 7% HS. Sputum levels of total interleukin-8 (IL-8), free IL-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase (NE) activity were measured before and after each treatment. The change in mediator levels from baseline with daily rhDNase and HS was not significant; however, with alternate-day rhDNase, there was an increase in free IL-8. When changes in mediator levels with daily rhDNase were compared with alternate-day rhDNase and HS, no significant differences were detected. Only changes in NE activity were associated with changes in lung function. In summary, we were unable to show that rhDNase or HS promote airway inflammation in CF.
Resumo:
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor systemis highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tertbutylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptidemediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca2+ mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.
Resumo:
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Resumo:
Anterior gradient-2 protein was identified using proteomic technologies as a p53 inhibitor which is overexpressed in human cancers, and this protein presents a novel pro-oncogenic target with which to develop diagnostic assays for biomarker detection in clinical tissue. Combinatorial phage-peptide libraries were used to select 12 amino acid polypeptide aptamers toward anterior gradient-2 to determine whether methods can be developed to affinity purify the protein from clinical biopsies. Selecting phage aptamers through four rounds of screening on recombinant human anterior gradient-2 protein identified two classes of peptide ligand that bind to distinct epitopes on anterior gradient-2 protein in an immunoblot. Synthetic biotinylated peptide aptamers bound in an ELISA format to anterior gradient-2, and substitution mutagenesis further minimized one polypeptide aptamer to a hexapeptide core. Aptamers containing this latter consensus sequence could be used to affinity purify to homogeneity human anterior gradient-2 protein from a single clinical biopsy. The spotting of a panel of peptide aptamers onto a protein microarray matrix could be used to quantify anterior gradient-2 protein from crude clinical biopsy lysates, providing a format for quantitative screening. These data highlight the utility of peptide combinatorial libraries to acquire rapidly a high-affinity ligand that can selectively bind a target protein from a clinical biopsy and provide a technological approach for clinical biomarker assay development in an aptamer microarray format.
Resumo:
Eukaryotic-especially human-membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.
Resumo:
Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates ? (4–7 Hz), a (7–14 Hz), ß (15–25 Hz), and ? (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.
Resumo:
Gender differences have been well established in verbal and spatial abilities but few studies have examined if these differences also extend into the domain of working memory in terms of behavioural differences and brain activation. The conclusions that can be drawn from these studies are not clear cut but suggest that even though gender differences might not be apparent from behavioural measures, the underlying neural substrate associated with working memory might be different in men and women. Previous research suggests activation in a network of frontal and parietal regions during working memory tasks. This study aimed to investigate gender differences in patterns of brain activation during a verbal version of the N-back working memory task, which incorporates the effects of increased demands on working memory. A total of 50 healthy subjects, aged 18 to 58 years, that were equally split by gender were recruited matched for age, levels of education and ethnicity. All subjects underwent functional magnetic resonance imaging. We found that men and women performed equally well in terms of accuracy and response times, while using similar brain regions to the same degree. Our observations indicate that verbal working memory is not affected by gender at the behavioural or neural level, and support the findings of a recent meta-analysis by Hyde ([2005]: Sex Roles 53:717-725) that gender differences are generally smaller than intra-gender differences in many cognitive domains. © 2009 Wiley-Liss, Inc.
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), Pick’s disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.