36 resultados para Real applications
em Aston University Research Archive
Resumo:
The performance of feed-forward neural networks in real applications can be often be improved significantly if use is made of a-priori information. For interpolation problems this prior knowledge frequently includes smoothness requirements on the network mapping, and can be imposed by the addition to the error function of suitable regularization terms. The new error function, however, now depends on the derivatives of the network mapping, and so the standard back-propagation algorithm cannot be applied. In this paper, we derive a computationally efficient learning algorithm, for a feed-forward network of arbitrary topology, which can be used to minimize the new error function. Networks having a single hidden layer, for which the learning algorithm simplifies, are treated as a special case.
Resumo:
We report a distinctive polarization mode coupling behaviour of tilted fibre Bragg gratings (TFBGs) with a tilted angle exceeding 45°. The ex-45° TFBGs exhibit pronounced polarization mode splitting resulted from the birefringence induced by the grating structure asymmetry. We have fabricated TFBGs with a tilted structure at 81° and studied their properties under transverse load applied to their equivalent fast and slow axes. The results show that the light coupling to the orthogonally polarized modes of the 81°-TFBGs changes only when the load is applied to their slow axis, giving a prominent directional loading response. For the view of real applications, we further investigated the possibility of interrogating such a TFBG-based load sensor using low-cost and compact-size single wavelength source and power detector. The experimental results clearly show that the 81°-TFBGs plus the proposed power-measurement interrogation scheme may be developed to an optical fibre vector sensor system capable of not just measuring the magnitude but also recognizing the direction of the applied transverse load. Using such an 81°-TFBG based load sensor, a load change as small as 1.6 × 10-2 g may be detected by employing a standard photodiode detector.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
The existing assignment problems for assigning n jobs to n individuals are limited to the considerations of cost or profit measured as crisp. However, in many real applications, costs are not deterministic numbers. This paper develops a procedure based on Data Envelopment Analysis method to solve the assignment problems with fuzzy costs or fuzzy profits for each possible assignment. It aims to obtain the points with maximum membership values for the fuzzy parameters while maximizing the profit or minimizing the assignment cost. In this method, a discrete approach is presented to rank the fuzzy numbers first. Then, corresponding to each fuzzy number, we introduce a crisp number using the efficiency concept. A numerical example is used to illustrate the usefulness of this new method. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conventional DEA models assume deterministic, precise and non-negative data for input and output observations. However, real applications may be characterized by observations that are given in form of intervals and include negative numbers. For instance, the consumption of electricity in decentralized energy resources may be either negative or positive, depending on the heat consumption. Likewise, the heat losses in distribution networks may be within a certain range, depending on e.g. external temperature and real-time outtake. Complementing earlier work separately addressing the two problems; interval data and negative data; we propose a comprehensive evaluation process for measuring the relative efficiencies of a set of DMUs in DEA. In our general formulation, the intervals may contain upper or lower bounds with different signs. The proposed method determines upper and lower bounds for the technical efficiency through the limits of the intervals after decomposition. Based on the interval scores, DMUs are then classified into three classes, namely, the strictly efficient, weakly efficient and inefficient. An intuitive ranking approach is presented for the respective classes. The approach is demonstrated through an application to the evaluation of bank branches. © 2013.
Resumo:
A recent novel approach to the visualisation and analysis of datasets, and one which is particularly applicable to those of a high dimension, is discussed in the context of real applications. A feed-forward neural network is utilised to effect a topographic, structure-preserving, dimension-reducing transformation of the data, with an additional facility to incorporate different degrees of associated subjective information. The properties of this transformation are illustrated on synthetic and real datasets, including the 1992 UK Research Assessment Exercise for funding in higher education. The method is compared and contrasted to established techniques for feature extraction, and related to topographic mappings, the Sammon projection and the statistical field of multidimensional scaling.
Resumo:
Over the last few years Data Envelopment Analysis (DEA) has been gaining increasing popularity as a tool for measuring efficiency and productivity of Decision Making Units (DMUs). Conventional DEA models assume non-negative inputs and outputs. However, in many real applications, some inputs and/or outputs can take negative values. Recently, Emrouznejad et al. [6] introduced a Semi-Oriented Radial Measure (SORM) for modelling DEA with negative data. This paper points out some issues in target setting with SORM models and introduces a modified SORM approach. An empirical study in bank sector demonstrates the applicability of the proposed model. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Data envelopment analysis (DEA) has gained a wide range of applications in measuring comparative efficiency of decision making units (DMUs) with multiple incommensurate inputs and outputs. The standard DEA method requires that the status of all input and output variables be known exactly. However, in many real applications, the status of some measures is not clearly known as inputs or outputs. These measures are referred to as flexible measures. This paper proposes a flexible slacks-based measure (FSBM) of efficiency in which each flexible measure can play input role for some DMUs and output role for others to maximize the relative efficiency of the DMU under evaluation. Further, we will show that when an operational unit is efficient in a specific flexible measure, this measure can play both input and output roles for this unit. In this case, the optimal input/output designation for flexible measure is one that optimizes the efficiency of the artificial average unit. An application in assessing UK higher education institutions used to show the applicability of the proposed approach. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ∼90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data. © 2012 Optical Society of America.
Resumo:
We experimentally demonstrate an all-fiber loading sensor system based on a 45° and an 81° tilted fiber grating (TFG). We have fabricated two TFGs adjacent to each other in a single fiber to form a hybrid structure. When the transverse load applied to the 81° TFG, the light coupling to the two orthogonally polarized modes will interchange the power according to the load applied to the fiber, which provides a solution to measure the load. For real applications, we further investigated the interrogation of this all-fiber loading sensor system using a low-cost and compact-size single wavelength source and a power meter. The experimental results have clearly shown that a low-cost high-sensitivity loading sensor system can be developed based on the proposed TFG configuration.
Resumo:
Climate change has become one of the most challenging issues facing the world. Chinese government has realized the importance of energy conservation and prevention of the climate changes for sustainable development of China's economy and set targets for CO2 emissions reduction in China. In China industry contributes 84.2% of the total CO2 emissions, especially manufacturing industries. Data envelopment analysis (DEA) and Malmquist productivity (MP) index are the widely used mathematical techniques to address the relative efficiency and productivity of a group of homogenous decision making units, e.g. industries or countries. However, in many real applications, especially those related to energy efficiency, there are often undesirable outputs, e.g. the pollutions, waste and CO2 emissions, which are produced inevitably with desirable outputs in the production. This paper introduces a novel Malmquist-Luenberger productivity (MLP) index based on directional distance function (DDF) to address the issue of productivity evolution of DMUs in the presence of undesirable outputs. The new RAM (Range-adjusted measure)-based global MLP index has been applied to evaluate CO2 emissions reduction in Chinese light manufacturing industries. Recommendations for policy makers have been discussed.
Resumo:
This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.
Resumo:
The automatic interpolation of environmental monitoring network data such as air quality or radiation levels in real-time setting poses a number of practical and theoretical questions. Among the problems found are (i) dealing and communicating uncertainty of predictions, (ii) automatic (hyper)parameter estimation, (iii) monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v) quality control. In this paper we discuss these issues, in light of the spatial interpolation comparison exercise held in 2004.