5 resultados para Readout durability
em Aston University Research Archive
Resumo:
This project is targeted towards establishing the durability and mechanisms of wear involved in the use of 5.25 inch magnetic floppy diskettes with particular reference to the media manufactured by the Minnesota Mining and Manufacturing Company, 3M Center, St. Paul, Minnesota, USA. In the present work most stress has been laid on the presentation of the conclusions drawn from the results obtained using samples produced specifically for this project. These samples were produced on the pilot plant at 3MTM, St. Paul, USA and are identified by the code 58759-4 with sample numbers SR1 to SR4 each with different lubrication conditions. All of the categories have been produced with four different surface roughnesses by varying the degree of burnishing. It has been found that the mechanisms of wear are related to a fatigue process. Some surprises have been noted in respect of the value of burnishing compared to the observations made elsewhere. Good reasons for these observed differences have been noted, however, and it will be shown that these are merely superficial and not concerned with wear of any real type. The present work reports the effects of the changes in the media's lubrication status and its surface topography as well as presenting evidence for the suggested wear mechanisms.
Resumo:
Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.
Resumo:
Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Resumo:
An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.
Resumo:
The demand for road making materials continues to pressurise the supply of traditional good quality aggregates. Over the years, therefore, consideration has been given to alternative materials including industrial wastes. This thesis is concerned with potential use of Minestone, the by-product of coal mining, for the lower structural layers of pavement construction. Because of their clay like nature, Minestones do not merit consideration for such applications in an unbound state and, therefore, some form of stabilisation is necessary. Previous research has demonstrated that certain cement bound minestones, containing between 5 and 10 per cent cement, satisfy current Department of Transport requirements for use in pavement construction and, furthermore, they are not frost susceptible. However, doubts concerning the durability of cement bound minestones still remain. The thesis includes a review of both the cement and lime stabilisation techniques and also traces the origin and development of the methods used to assess the quality and durability of stabilised materials. An experimental study is described in which cement bound minestone specimens were subjected to a programme of tests which examined compressive strength, resistance to immersion, and resistance to freezing and thawing. The results of the tests were related to the properties of the raw materials. It was discovered that the response to cement stabilisation was governed mainly by the source of the minestone and, to a lesser degree, the cement content. It was also found that resistance in the durability tests was generally improved when the initial moisture content was raised above the optimum value. The result suggest that current methods for assessing cement stabilised materials are not appropriate to cement bound minestones. Alternative methods and criteria, based on volume change and retained strength following immersion and freeze-thaw tests, have been proposed. It is believed that these methods and criteria should also apply to other cement bound materials.