3 resultados para Rats as laboratory animals.
em Aston University Research Archive
Resumo:
Excess calorie consumption is associated with metabolic disorders and increased incidence of morbidity. Restricting calorie content, either by daily calorie restriction or intermittent fasting periods, has multiple benefits including weight loss and improved body composition. Previous research has shown that restricting calories in this way can increase longevity and slow the ageing process in laboratory animals, although only sparse data exist in human populations. This review critically evaluates the benefits of these dietary interventions on age-related decline and longevity.
Resumo:
Phosphorylation processes are common post-transductional mechanisms, by which it is possible to modulate a number of metabolic pathways. Proteins are highly sensitive to phosphorylation, which governs many protein-protein interactions. The enzymatic activity of some protein tyrosine-kinases is under tyrosine-phosphorylation control, as well as several transmembrane anion-fluxes and cation exchanges. In addition, phosphorylation reactions are involved in intra and extra-cellular 'cross-talk' processes. Early studies adopted laboratory animals to study these little known phosphorylation processes. The main difficulty encountered with these animal techniques was obtaining sufficient kinase or phosphatase activity suitable for studying the enzymatic process. Large amounts of biological material from organs, such as the liver and spleen were necessary to conduct such work with protein kinases. Subsequent studies revealed the ubiquity and complexity of phosphorylation processes and techniques evolved from early rat studies to the adaptation of more rewarding in vitro models. These involved human erythrocytes, which are a convenient source both for the enzymes, we investigated and for their substrates. This preliminary work facilitated the development of more advanced phosphorylative models that are based on cell lines. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.