9 resultados para Rare earth ions

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction. It is found that 7.9(7) R-R nearest neighbors reside at 5.62(6) Angstrom in a network made from interlinked PO4 tetrahedra. Provided that the role of Al is explicitly considered, a self-consistent account of the local matrix atom correlations can be developed in which there are 1.68(9) bridging and 2.32(9) terminal oxygen atoms per phosphorus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnetic difference neutron diffraction study of a rare-earth (Tb) phosphate glass has revealed exclusively the Tb...Tb distances. The difference between data taken with and without an applied magnetic field of 4 T shows Tb...Tb pairwise atomic correlations at 3.9 and 6.4 A, respectively, with relative coordination numbers of 1:14. The first distance arises when two Tb3+ ions share a common oxygen neighbor, and indicates a clustering of rare-earth ions. The second distance arises when two Tb3+ ions are coordinated to different oxygens in the same PO4 group, in a near-linear arrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the Sm3+ ions in the structure of vitreous Sm2O3•4P2O5 has been investigated using the neutron diffraction anomalous dispersion technique, which employs the wavelength dependence of the real and imaginary parts of the neutron scattering length close to an absorption resonance. The data described here represent the first successful complete neutron anomalous dispersion study on an amorphous material. This experimental methodology permits one to determine exclusively the closest Sm• •• Sm separation. Knowledge of the R•••R (R = rare-earth) pairwise correlation is key to understanding the optical and magnetic properties of rare-earth phosphate glasses. The anomalous difference correlation function, ΔT''(r), shows a dominant feature pertaining to a Sm•••Sm separation, centred at 4.8 Å. The substantial width and marked asymmetry of this peak indicates that the minimum approach of Sm3+ ions could be as close as 4 Å. Information on other pairwise correlations is also revealed via analysis of T (r) and ΔT (r) correlation functions: Sm3+ ions display an average co-ordination number, n Sm(O), of 7, with a mean Sm–O bond length of 2.375(5) Å whilst the PO4 tetrahedra have a mean P–O bond length of 1.538(2) Å. Second- and third-neighbour correlations are also identified. These results corroborate previous findings. Such consistency lends support to the application of the anomalous dispersion technique to determine separations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutron diffraction was used to measure the structure of the phosphate glasses RAl0.30P3.05O9.62, where R denotes Dy or Ho, and RAl0.34P3.20O10.04, where R denotes La or Ce. For each glass, isomorphic structures were assumed and difference function methods were employed to separate, essentially, those correlations involving the rare-earth ion, R3+, from the remainder. The ratio of bridging oxygen, OB, to terminal oxygen, OT, atoms in the PO4 tetrahedra was quantified and in both materials R3+ and Al3+ are found to act as network modifying cations which bind to the OT. The R–OT coordination number is 6.7(1) and 7.5(2) for the Dy/Ho and La/Ce glasses respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a neodymium-doped phosphate glass fiber with a silica cladding and used it to form a fiber laser. Phosphate and silicate glasses have considerably different glass transition temperatures and softening points making it hard to draw a fiber from these two glasses. A bulk phosphate glass of composition (Nd2O3)(0.011)(La2O3)(0.259)(P2O5)(0.725)(Al2O3)(0.005) was prepared and the resultant material was transparent, free from bubbles and visibly homogeneous. The bulk phosphate glass was drawn to a fiber while being jacketed with silica and the resultant structure was of good optical quality, free from air bubbles and major defects. The attenuation at a wavelength of 1.06 mu m was 0.05 dB/cm and the refractive index of the core and cladding at the pump wavelength of 488 nm was 1.56 and 1.46, respectively. The fibers were mechanically strong enough to allow for ease of handling and could be spliced to conventional silica fiber. The fibers were used to demonstrate lasing at the F-4(3/2) - I-4(11/2) (1.06 mu m) transition. Our work demonstrates the potential to form silica clad optical fibers with phosphate cores doped with very high levels of rare-earth ions (27-mol % rare-earth oxide).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction and, by taking the role of Al into explicit account, a self-consistent model of the glass structure was developed. The glass network is found to be made from corner sharing PO4 tetrahedra in which there are, on average, 2.32(9) terminal oxygen atoms, OT, at 1.50(1) Å and 1.68(9) bridging oxygen atoms, OB, at 1.60(1) Å. The network modifying R3+ ions bind to an average of 6.7(1) OT and are distributed such that 7.9(7) R–R nearest neighbours reside at 5.62(6) Å. The Al3+ ion also has a network modifying role in which it helps to strengthen the glass through the formation of OT–Al–OT linkages. The connectivity of the R-centred coordination polyhedra in (M2O3)x(P2O5)1−x glasses, where M3+ denotes a network modifying cation (R3+ or Al3+), is quantified in terms of a parameter fs. Methods for reducing the clustering of rare-earth ions in these materials are then discussed, based on a reduction of fs via the replacement of R3+ by Al3+ at fixed total modifier content or via a change of x to increase the number of OT available per network modifying M3+ cation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.