5 resultados para Random solutions
em Aston University Research Archive
Resumo:
The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the two-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges. ©2002 The American Physical Society.
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
In this work, the liquid-liquid and solid-liquid phase behaviour of ten aqueous pseudo-binary and three binary systems containing polyethylene glycol (PEG) 2050, polyethylene glycol 35000, aniline, N,N-dimethylaniline and water, in the temperature range 298.15-350.15 K and at ambient pressure of 0.1 MPa, was studied. The obtained temperature-composition phase diagrams showed that the only functional co-solvent was PEG2050 for aniline in water, while PEG35000 even showed a clear anti-solvent effect in the N,N-dimethylaniline aqueous system. The experimental solid-liquid equilibria (SLE) data have been correlated by the non-random two-liquid (NRTL) model, and the correlation results are in accordance with the experimental results.