39 resultados para Ramp

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many models of edge analysis in biological vision, the initial stage is a linear 2nd derivative operation. Such models predict that adding a linear luminance ramp to an edge will have no effect on the edge's appearance, since the ramp has no effect on the 2nd derivative. Our experiments did not support this prediction: adding a negative-going ramp to a positive-going edge (or vice-versa) greatly reduced the perceived blur and contrast of the edge. The effects on a fairly sharp edge were accurately predicted by a nonlinear multi-scale model of edge processing [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision], in which a half-wave rectifier comes after the 1st derivative filter. But we also found that the ramp affected perceived blur more profoundly when the edge blur was large, and this greater effect was not predicted by the existing model. The model's fit to these data was much improved when the simple half-wave rectifier was replaced by a threshold-like transducer [May, K. A. & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47, 1705-1720.]. This modified model correctly predicted that the interaction between ramp gradient and edge scale would be much larger for blur perception than for contrast perception. In our model, the ramp narrows an internal representation of the gradient profile, leading to a reduction in perceived blur. This in turn reduces perceived contrast because estimated blur plays a role in the model's estimation of contrast. Interestingly, the model predicts that analogous effects should occur when the width of the window containing the edge is made narrower. This has already been confirmed for blur perception; here, we further support the model by showing a similar effect for contrast perception. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the source of a tone moves with respect to a listener's ears, dichotic (or interaural) phase and amplitude modulations (PM and AM) are produced. Two experiments investigated the psychophysical characteristics of dichotic linear ramp modulations in phase and amplitude, and compared them with the psychophysics of diotic PM and AM. In experiment 1, subjects were substantially more sensitive to dichotic PM than diotic PM, but AM sensitivity was equivalent in the dichotic and diotic conditions. Thresholds for discriminating modulation direction were smaller than detection thresholds for dichotic AM, and both diotic AM and PM. Dichotic PM discrimination thresholds were similar to detection thresholds. In experiment 2, the effects of ramp duration were examined. Sensitivity to dichotic AM and PM, and diotic AM increased as duration was increased from 20 ms to 200 ms. The functions relating sensitivity to ramp duration differed across the stimuli; sensitivity to dichotic PM increased more rapidly than sensitivity to dichotic or diotic AM. This was also reflected in shorter time-constants and minimum integration times for dichotic PM detection. These findings support the hypothesis that the analysis of dichotic PM and AM rely on separate mechanisms. © 2003 Acoustical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our conceptual understanding of the molecular architecture of G-protein coupled receptors (GPCRs) has transformed over the last decade. Once considered as largely independent functional units (aside from their interaction with the G-protein itself), it is now clear that a single GPCR is but part of a multifaceted signaling complex, each component providing an additional layer of sophistication. Receptor activity-modifying proteins (RAMPs) provide a notable example of proteins that interact with GPCRs to modify their function. They act as pharmacological switches, modifying GPCR pharmacology for a particular subset of receptors. However, there is accumulating evidence that these ubiquitous proteins have a broader role, regulating signaling and receptor trafficking. This article aims to provide the reader with a comprehensive appraisal of RAMP literature and perhaps some insight into the impact that their discovery has had on those who study GPCRs. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAMPs (receptor activity-modifying proteins) are single-pass transmembrane proteins that associate with certain family-B GPCRs (G-protein-coupled receptors). Specifically for the CT (calcitonin) receptor-like receptor and the CT receptor, this results in profound changes in ligand binding and receptor pharmacology, allowing the generation of six distinct receptors with preferences for CGRP (CT gene-related peptide) adrenomedullin, amylin and CT. There are three RAMPs: RAMP1-RAMP3. The N-terminus appears to be the main determinant of receptor pharmacology whereas the transmembrane domain contributes to association of the RAMP with the GPCR. The N-terminus of all members of the RAMP family probably contains two disulphide bonds; a potential third disulphide is found in RAMP1 and RAMP3. The N-terminus appears to be in close proximity to the ligand and plays a key role in its binding, either directly or indirectly. BIBN4096BS, a CGRP antagonist, targets RAMP1 and this gives the compound very high selectivity for the human CGRP(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin (AM) has two specific receptors formed by the calcitonin-receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3. These are known as AM1 and AM2 receptors, respectively. In addition, AM has appreciable affinity for the CGRP1 receptor, composed of CL and RAMP1. The AM1 receptor has a high degree of selectivity for AM over CGRP and other peptides, and AM 22-52 is an effective antagonist at this receptor. By contrast, the AM2 receptor shows less specificity for AM, having appreciable affinity for βCGRP. Here, CGRP8-37 is either equipotent or more effective as an antagonist than AM22-52, depending on the species from which the receptor components are derived. Thus, under the appropriate circumstances it seems that βCGRP might be able to activate both CGRP 1 and AM2 receptors and AM could activate both AM 1 and AM2 receptors as well as CGRP1 receptors. Current peptide antagonists are not sufficiently selective to discriminate between these three receptors. The CGRP-selectivity of RAMP1 and RAMP3 may be conferred by a putative disulfide bond from the N-terminus to the middle of the extracellular domain of these molecules. This is not present in RAMP2. Copyright © 2004 Humana Press Inc. All rights of any nature whatsoever reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Adrenomedullin (AM) has two known receptors formed by the calcitonin receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3: We report the effects of the antagonist fragments of human AM and CGRP (AM 22-52 and CGRP 8-37) in inhibiting AM at human (h), rat (r) and mixed species CL/RAMP2 and CL/RAMP3 receptors transiently expressed in Cos 7 cells or endogenously expressed as rCL/rRAMP2 complexes by Rat 2 and L6 cells. 2. AM 22-52 (10 μM) antagonised AM at all CL/RAMP2 complexes (apparent pA 2 values: 7.34±0.14 (hCL/hRAMP2), 7.28±0.06 (Rat2), 7.00±0.05 (L6), 6.25±0.17(rCL/hRAMP2)). CGRP 8-37 (10 μM) resembled AM 22-52 except on the rCL/hRAMP2 complex, where it did not antagonise AM (apparent PA 2 values: 7.04±0.13 (hCL/hRAMP2), 6.72±0.06 (Rat2), 7.03±0. 12 (L6)). 3. On CL/RAMP3 receptors, 10 μM CGRP 8-37 was an effective antagonist at all combinations (apparent pA 2 values: 6.96±0.08 (hCL/hRAMP3), 6.18±0.18 (rCL/rRAMP3), 6.48±0.20 (rCL/ hRAMP3)). However, 10 μm AM 22-52 only antagonised AM at the hCL/hRAMP3 receptor (apparent PA 2 6.73±0.14). 4. BIBN4096BS (10 μM) did not antagonise AM at any of the receptors. 5. Where investigated (all-rat and rat/human combinations), the agonist potency order on the CL/ RAMP3 receptor was AM∼βCGRP>αCGRP. 6. rRAMP3 showed three apparent polymorphisms, none of which altered its coding sequence. 7. This study shows that on CL/RAMP complexes, AM 22-52 has significant selectivity for the CL/ RAMP2 combination over the CL/RAMP3 combination. On the mixed species receptor, CGRP 8-37 showed the opposite selectivity. Thus, depending on the species, it is possible to discriminate pharmacologically between CL/RAMP2 and CL/RAMP3 AM receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feature detection is a crucial stage of visual processing. In previous feature-marking experiments we found that peaks in the 3rd derivative of the luminance profile can signify edges where there are no 1st derivative peaks nor 2nd derivative zero-crossings (Wallis and George 'Mach edges' (the edges of Mach bands) were nicely predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test of the model, we now use a new class of stimuli, formed by adding a linear luminance ramp to the blurred triangle waves used previously. The ramp has no effect on the second or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing only one edge as the added ramp gradient increases. In experiment 1, subjects judged whether one or two edges were visible on each trial. In experiment 2, subjects used a cursor to mark perceived edges and bars. The position and polarity of the marked edges were close to model predictions. Both experiments produced the predicted shift from two to one Mach edge, but the shift was less complete than predicted. We conclude that the model is a useful predictor of edge perception, but needs some modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision Research, 47, 1721-1731]. Thus, when we allow for the visual system's insensitivity to very shallow luminance gradients, our multi-scale model can be extended to edge coding over a wide range of contrasts and blurs. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.