21 resultados para Radio-frequency plasma enhanced chemical vapor deposition

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The features of the Furnace Chemical Vapor Deposition (FCVD) method of manufacturing preforms for special optical fibers are considered. It is shown that misalignment of substrate silica tube and furnace hole axes has a negative effect on the quality of fabricated preforms, leading to angular and radial asymmetry of the refractive index profile. Ways of getting rid of this and other disadvantages of the FCVD method are described. Some advantages of the FCVD method over the MCVD method are shown. It was demonstrated that the FCVD method, despite some drawbacks, allows to manufacture high-quality fiber preforms with good symmetry of the refractive index profile, and thus it is promising for fabrication of dispersion, dispersion varying and active fibers. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detonation nanodiamond (DND) is an attractive class of diamond material, which has a great potential to be used for a wide range of applications. In this paper, untreated DND was employed to perform hydrogen passivation process using microwave plasma enhanced chemical vapor deposition in order to investigate the influence of hydrogen-terminated surface on the DND's electrical properties. Impedance spectroscopy (IS) has been used to characterize the electrical properties of DND samples using a newly-developed measurement set-up. It is found that hydrogen-passivation process has increased the electrical conductivity of the DND by up to four orders of magnitude when compared with the untreated sample. An RC parallel equivalent circuit with a Warburg element has been proposed to model the DND's impedance characteristics. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, optical, mechanical, as well as other properties of diamond materials are summarised. Followed by this chapter, several advanced diamond growth and characterisation techniques used in experimental work are also introduced. Then, the successful installation and applications of chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a variety of different substrates has been investigated such as on silicon, diamond-like carbon or silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to perform femtosecond laser inscription. The results proved the potentially feasibility of this technique, which could be utilised in fabricating future biochemistry microfluidic channels on diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were presented and analysed in details. As the first PhD student within Nanoscience Research Group at Aston, my initial research work was focused on the installation and testing of the microwave plasma enhanced chemical vapour deposition system (MPECVD), which will be beneficial to all the future researchers in the group. The fundamental of the on MPECVD system will be introduced in details. After optimisation of the growth parameters, the uniform diamond deposition has been achieved with a good surface coverage and uniformity. Furthermore, one of the most significant contributions of this work is the successful pattern inscription on diamond substrates by femtosecond laser system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, with little characterisation techniques were used. In my research work, the femtosecond laser has been successfully used to inscribe patterns on diamond substrate and fully characterisation techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the femtosecond laser inscription, the depth of microfluidic channels on diamond film has been found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important outcome of this work is the first time to characterise the electrical properties of hydrogenterminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 MO, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogenterminated nanodiamond samples were annealed at different temperature to study its thermal stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to oxidize over 100ºC and the C-H bonds can survive up to 400ºC. This research work reports the fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in future applications in physical or chemical area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio frequency identification (RFID) technology has gained increasing popularity in businesses to improve operational efficiency and maximise costs saving. However, there is a gap in the literature exploring the enhanced use of RFID to substantially add values to the supply chain operations, especially beyond what the RFID vendors could offer. This paper presents a multi-agent system, incorporating RFID technology, aimed at fulfilling the gap. The system is developed to model supply chain activities (in particular, logistics operations) and is comprised of autonomous and intelligent agents representing the key entities in the supply chain. With the advanced characteristics of RFID incorporated, the agent system examines ways logistics operations (i.e. distribution network) particular) can be efficiently reconfigured and optimised in response to dynamic changes in the market, production and at any stage in the supply chain. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDABC in a warehouse is implemented on warehouse processes of a case study company. Implementation covers receiving, put-away, order picking, and despatching. Findings and Originality: RFID technology is commonly used for the identification and tracking items. The use of the RFID generated information with the TDABC can be successfully extended to the area of costing. This RFID-TDABC costing model will benefit warehouse managers with accurate and instant calculations of costs. Research Impact: There are still unexplored benefits to RFID technology in its applications in warehousing and the wider supply chain. A multi-disciplinary research approach led to combining RFID technology and TDABC accounting method in order to propose RFID-TDABC. Combining methods and theories from different fields with RFID, may lead researchers to develop new techniques such as RFID-TDABC presented in this paper. Practical Impact: RFID-TDABC concept will be of value to practitioners by showing how warehouse costs can be accurately measured by using this approach. Providing better understanding of incurred costs may result in a further optimisation of warehousing operations, lowering costs of activities, and thus provide competitive pricing to customers. RFID-TDABC can be applied in a wider supply chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warehouse is an essential component in the supply chain, linking the chain partners and providing them with functions of product storage, inbound and outbound operations along with value-added processes. Allocation of warehouse resources should be efficient and effective to achieve optimum productivity and reduce operational costs. Radio frequency identification (RFID) is a technology capable of providing real-time information about supply chain operations. It has been used by warehousing and logistic enterprises to achieve reduced shrinkage, improved material handling and tracking as well as increased accuracy of data collection. However, both academics and practitioners express concerns about challenges to RFID adoption in the supply chain. This paper provides a comprehensive analysis of the problems encountered in RFID implementation at warehouses, discussing the theoretical and practical adoption barriers and causes of not achieving full potential of the technology. Lack of foreseeable return on investment (ROI) and high costs are the most commonly reported obstacles. Variety of standards and radio wave frequencies are identified as source of concern for decision makers. Inaccurate performance of the RFID within the warehouse environment is examined. Description of integration challenges between warehouse management system and RFID technology is given. The paper discusses the existing solutions to technological, investment and performance RFID adoption barriers. Factors to consider when implementing the RFID technology are given to help alleviate implementation problems. By illustrating the challenges of RFID in the warehouse environment and discussing possible solutions the paper aims to help both academics and practitioners to focus on key areas constituting an obstacle to the technology growth. As more studies will address these challenges, the realisation of RFID benefits for warehouses and supply chain will become a reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spray-drying represents a viable alternative to freeze-drying for preparing dry powder dispersions for delivering macromolecules to the lung. The dispersibility of spray-dried powders is limited however, and needs to be enhanced to improve lung deposition and subsequent biological activity. In this study, we investigate the utility of leucine as a dry powder dispersibility enhancer when added prior to spray-drying a model non-viral gene therapy formulation (lipid:polycation:pDNA, LPD). Freeze-dried lactose-LPD, spray-dried lactose-LPD and spray-dried leucine-lactose-LPD powders were prepared. Scanning electron microscopy showed that leucine, increased the surface roughness of spray-dried lactose particles. Particle size analysis revealed that leucine-containing spray-dried powders were unimodally dispersed with a mean particle diameter of 3.12 μm. Both gel electrophoresis and in vitro cell (A549) transfection showed that leucine may compromise the integrity and biological functionality of the gene therapy vector. The deposition of the leucine containing powder was however significantly enhanced as evidenced by an increase in gene expression mediated by dry powder collected at lower stages of a multistage liquid impinger (MSLI). Further studies are required to determine the potential of leucine as a ubiquitous dispersibility enhancer for a variety of pulmonary formulations. © 2003 Taylor & Francis Ltd.