5 resultados para Radio equipment.
em Aston University Research Archive
Resumo:
The explosive growth in microprocessor technology and the increasing use of computers to store information has increased the demand for data communication channels. Because of this, data communication to mobile vehicles is increasing rapidly. In addition, data communication is seen as a method of relieving the current congestion of mobile radio telephone bands in the U.K. Highly reliable data communication over mobile radio channels is particularly difficult to achieve, primarily due to fading caused by multipath interference. In this thesis a data communication system is described for use over radio channels impaired by multipath interference. The thesis first describes radio communication in general, and multipath interference In particular. The practical aspects of fading channels are stressed because of their importance in the development of the system. The current U.K. land mobile radio scene is then reviewed, with particular emphasis on the use of existing mobile radio equipment for data communication purposes. The development of the data communication system is then described. This system is microprocessor based and uses an advanced form of automatic request repeat (ARQ) operation. It can be configured to use either existing radio-telephone equipment, totally new equipment specifically designed for data communication, or any combination of the two. Due to its adaptability, the system can automatically optimise itself for use over any channel, even if the channel parameters are changing rapidly. Results obtained from a particular implementation of the system, which is described in full, are presented. These show how the operation of the system has to change to accomodate changes in the channel. Comparisons are made between the practical results and the theoretical limits of the system.
An agent approach to improving radio frequency identification enabled Returnable Transport Equipment
Resumo:
Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.
Resumo:
Fierce competition within the third party logistics (3PL) market has developed as providers compete to win customers and enhance their competitive advantage through cost reduction plans and creating service differentiation. 3PL providers are expected to develop advanced technological and logistical service applications that can support cost reduction while increasing service innovation. To enhance competitiveness, this paper proposes the implementation of radio-frequency identification (RFID) enabled returnable transport equipment (RTE) in combination with the consolidation of network assets and cross-docking. RFID enabled RTE can significantly improve network visibility of all assets with continuous real-time data updates. A four-level cyclic model aiding 3PL providers to achieve competitive advantage has been developed. The focus is to reduce assets, increase asset utilisation, reduce RTE cycle time and introduce real-time data in the 3PL network. Furthermore, this paper highlights the need for further research from the 3PL perspective. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.
Resumo:
We observed an anomaly in the human electroencephalogram (EEG) associated with exposure to terrestrial trunked radio (TETRA) Radiofrequency Fields (RF). Here, we characterize the time and frequency components of the anomaly and demonstrate that it is an artefact caused by TETRA RF interfering with the EEG recording equipment and not by any direct or indirect effect on the brain.