19 resultados para Radio Activity in the Atmospheric
em Aston University Research Archive
Resumo:
In the present study I investigated the mechanisms of modulation of neuronal network activity in rat primary motor cortex using pharmacological manipulations employing the in vitro brain slice technique. Preparation of the brain slice in sucrose-based aCSF produced slices with low viability. Introducing the neuroprotectants N-acetyl-cysteine, taurine and aminoguanidine to the preparatory method saw viability of slices increase significantly. Co-application of low dose kainic acid and carbachol consistently generated beta oscillatory activity in M1. Analyses indicated that network activity in M1 relied on the involvement of GABAA receptors. Dose-response experiments performed in M1 showed that beta activity can be modulated by benzodiazepine site ligands. Low doses of positive allosteric modulators consistently desynchronised beta oscillatory activity, a mechanism that may be driven by a1-subunit containing GABAA receptors. Higher doses increased the power of beta oscillatory activity. Whole-cell recordings in M1 uncovered three interneuronal subtypes regularly encountered in M1; Fast-spiking, regular-spiking non-Pyramidal and low threshold spiking. With the paradoxical effects of positive allosteric modulators in mind, subsequent voltage-clamp recordings in FS cells revealed a constitutively active tonic inhibitory current that could be modulated by zolpidem in two different ways. Low dose zolpidem increased the tonic inhibitory current in FS cells, consistent with the desynchronisation of network oscillatory activity seen at this concentration. High dose zolpidem decreased the inhibitory tonic current seen in FS cells, coinciding with an increase in oscillatory power. These studies indicate a fundamental role for a tonic inhibitory current in the modulation of network activity. Furthermore, desynchronisation of beta activity in M1 decreased as viability of the in vitro brain slice increased, suggesting that the extent of desynchronisation is dependent upon the pathophysiological state of the network. This indicates that low dose zolpidem could be used as a therapeutic agent specifically for the desynchronisation of pathological oscillations in oscillopathies such as Parkinson’s disease.
Resumo:
Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Neuronal burst firing in the subthalamic nucleus (STN) is one of the hallmarks of dopamine depletion in Parkinson's disease. Here, we have determined the postsynaptic effects of dopamine in the STN and the functional consequences of dopamine receptor modulation on burst firing in vitro. STN cells displayed regular spiking activity at a rate of 7.9 +/- 0.5 Hz. Application of dopamine (30 mu M) induced membrane depolarisations accompanied by an increase in firing rate of mean 12.0 +/- 0.6 Hz in all 69 cells. The dopamine effect was mimicked by the dopamine D1/D5 receptor agonist SKF38393 (10 mu M, 17 cells) and the dopamine D2-like receptor agonist quinpirole (10 mu M, 35 cells), partly reduced by D1/D5 antagonist SCH23390 (2 mu M, seven cells), but unaffected by the D2 antagonists sulpiride (10 mu M, seven cells) or eticlopride (10 mu M, six cells). Using voltage ramps, dopamine induced an inward current of 69 +/- 9.4 pA at a holding potential of -60 mV (n = 17). This current was accompanied by an increase in input conductance of 1.55 +/- 0.35 nS which reversed at -30.6 +/- 2.3 mV, an effect mimicked by SKF38393 (10 AM, nine cells). Similar responses were observed when measuring instantaneous current evoked by voltage steps and in the presence of the I-h blocker, ZD7288, indicating effects independent of I-h. The increase in conductance was blocked by SCH23390 (2 mu M, n = 4), mimicked by the activator of adenylyl cyclase forskolin (10 mu M, n = 7) and blocked by H-89, an inhibitor of cyclic AMP dependent protein kinase A (10 PM, n = 6). These results indicate that the dopamine depolarisation is in part mediated by D1/D5 receptor mediated activation of a cyclic-nucleotide gated (CNG) non-specific cation conductance. This conductance contributes to the membrane depolarisation that changes STN neuronal bursting to more regular activity by significantly increasing burst duration and number of spikes per burst.
Resumo:
Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.
Resumo:
In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.
Resumo:
The kinin family are a group of bioactive peptides that are closely involved in the modulation of vascular inflammation and local injury. We have demonstrated here, for the first time, a link between kinin activity and contact lens wear. Protein extracts from daily and extended wear etafilcon A, Group IV, Acuvue lenses (Vistakon), were analysed by counter immunoelectrophoresis. In this way, kinin activity associated with contact lens wear was detected. High molecular weight kininogen was used as the marker protein. In contrast, no kinin activity was detected in the non-lens wearing normal eye. © 2002 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of nitric oxide (NO) on apoptosis in the gastrointestinal mucosa was investigated. Experiments involved long-term exposure of rat gastric mucosal cells in vitro to exogenous NO delivered from the NO, donor S-nitroso-N-acetyl-penicillamine, and the effect of intravenous administration of lipopolysaccharide in vivo, in the presence and absence of the selective inhibitor of inducible NO synthase N-(3-(aminomethyl)benzyl) acetamidine (1400 W). S-nitroso-N-acetyl-penicillamine produced a dose-related inhibition of caspase 3-like activity and DNA fragmentation in isolated gastric mucosal cells. Caspase 3-like activity and DNA fragmentation in gastric, ileal and colonic mucosa were increased both 5 and 24 h after injection of lipopolysaccharide (3 mg/kg, i.v.) to rats in vivo. Administration of 1400 W (5 mg/kg, i.v.) immediately after lipopolysaccharide enhanced caspase 3-like activity and DNA fragmentation above that found with lipopolysaccharide alone. In conclusion, data obtained both in vitro and in vivo suggest that NO exerts an anti-apoptotic effect on rat gastrointestinal mucosal cells. © 2001 Elsevier Science B.V.
Resumo:
Various neuroimaging investigations have revealed that perception of emotional pictures is associated with greater visual cortex activity than their neutral counterparts. It has further been proposed that threat-related information is rapidly processed, suggesting that the modulation of visual cortex activity should occur at an early stage. Additional studies have demonstrated that oscillatory activity in the gamma band range (40-100 Hz) is associated with threat processing. Magnetoencephalography (MEG) was used to investigate such activity during perception of task-irrelevant, threat-related versus neutral facial expressions. Our results demonstrated a bilateral reduction in gamma band activity for expressions of threat, specifically anger, compared with neutral faces in extrastriate visual cortex (BA 18) within 50-250 ms of stimulus onset. These results suggest that gamma activity in visual cortex may play a role in affective modulation of visual processing, in particular with the perception of threat cues.
Resumo:
The effects of attentional modulation on activity within the human visual cortex were investigated using magnetoencephalography. Chromatic sinusoidal stimuli were used to evoke activity from the occipital cortex, with attention directed either toward or away from the stimulus using a bar-orientation judgment task. For five observers, global magnetic field power was plotted as a function of time from stimulus onset. The major peak of each function occurred at about 120 ms latency and was well modeled by a current dipole near the calcarine sulcus. Independent component analysis (ICA) on the non-averaged data for each observer also revealed one component of calcarine origin, the location of which matched that of the dipolar source determined from the averaged data. For two observers, ICA revealed a second component near the parieto-occipital sulcus. Although no effects of attention were evident using standard averaging procedures, time-varying spectral analyses of single trials revealed that the main effect of attention was to alter the level of oscillatory activity. Most notably, a sustained increase in alpha-band (7-12 Hz) activity of both calcarine and parieto-occipital origin was evident. In addition, calcarine activity in the range of 13-21 Hz was enhanced, while calcarine activity in the range of 5-6 Hz was reduced. Our results are consistent with the hypothesis that attentional modulation affects neural processing within the calcarine and parieto-occipital cortex by altering the amplitude of alpha-band activity and other natural brain rhythms. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Neurocognitive models propose a specialized neural system for processing threat-related information, in which the amygdala plays a key role in the analysis of threat cues. fMRI research indicates that the amygdala is sensitive to coarse visual threat relevant information—for example, low spatial frequency (LSF) fearful faces. However, fMRI cannot determine the temporal or spectral characteristics of neural responses. Consequently, we used magnetoencephalography to explore spatiotemporal patterns of activity in the amygdala and cortical regions with blurry (LSF) and normal angry, fearful, and neutral faces. Results demonstrated differences in amygdala activity between LSF threat-related and LSF neutral faces (50-250 msec after face onset). These differences were evident in the theta range (4-8 Hz) and were accompanied by power changes within visual and frontal regions. Our results support the view that the amygdala is involved in the early processing of coarse threat related information and that theta is important in integrating activity within emotion-processing networks.
Resumo:
In accordance with its central role in basal ganglia circuitry, changes in the rate of action potential firing and pattern of activity in the globus pallidus (GP)-subthalamic nucleus (STN) network are apparent in movement disorders. In this study we have developed a mouse brain slice preparation that maintains the functional connectivity between the GP and STN in order to assess its role in shaping and modulating bursting activity promoted by pharmacological manipulations. Fibre-tract tracing studies indicated that a parasagittal slice cut 20 deg to the midline best preserved connectivity between the GP and the STN. IPSCs and EPSCs elicited by electrical stimulation confirmed connectivity from GP to STN in 44/59 slices and from STN to GP in 22/33 slices, respectively. In control slices, 74/76 (97%) of STN cells fired tonically at a rate of 10.3 ± 1.3 Hz. This rate and pattern of single spiking activity was unaffected by bath application of the GABAA antagonist picrotoxin (50 μM, n = 9) or the glutamate receptor antagonist (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM, n = 8). Bursting activity in STN neurones could be induced pharmacologically by application of NMDA alone (20 μM, 3/18 cells, 17%) but was more robust if NMDA was applied in conjunction with apamin (20-100 nM, 34/77 cells, 44%). Once again, neither picrotoxin (50 μM, n = 5) nor CNQX (10 μM, n = 5) had any effect on the frequency or pattern of the STN neurone activity while paired STN and GP recordings of tonic and bursting activity show no evidence of coherent activity. Thus, in a mouse brain slice preparation where functional GP-STN connectivity is preserved, no regenerative synaptically mediated activity indicative of a dynamic network is evident, either in the resting state or when neuronal bursting in both the GP and STN is generated by application of NMDA/apamin. This difference from the brain in Parkinson's disease may be attributed either to insufficient preservation of cortico-striato-pallidal or cortico-subthalamic circuitry, and/or an essential requirement for adaptive changes resulting from dopamine depletion for the expression of network activity within this tissue complex. © The Physiological Society 2005.
Resumo:
Gamma activity in the visual cortex has been reported in numerous EEG studies of coherent and illusory figures. A dominant theme of many such findings has been that temporal synchronization in the gamma band in response to these identifiable percepts is related to perceptual binding of the common features of the stimulus. In two recent studies using magnetoencephalography (MEG) and the beamformer analysis technique, we have shown that the magnitude of induced gamma activity in visual cortex is dependent upon independent stimulus features such as spatial frequency and contrast. In particular, we showed that induced gamma activity is maximal in response to gratings of 3 cycles per degree (3 cpd) of high luminance contrast. In this work, we set out to examine stimulus contrast further by using isoluminant red/green gratings that possess color but not luminance contrast using the same cohort of subjects. We found no induced gamma activity in V1 or visual cortex in response to the isoluminant gratings in these subjects who had previously shown strong induced gamma activity in V1 for luminance contrast gratings.
Resumo:
This study concerns the nature of nitric oxide synthase (NOS) and the role of nitric oxide (NO) in the rat gastrointestinal tract. The major objectives were (i) to characterise NOS isoforms in the gastric glandular mucosa, (ii) to localise NOS isoforms in the rat gastric glandular mucosa, (iii) to investigate the role of NO in carbachol-stimulated gastric mucus secretion, (iv) to investigate the nature of NOS and small intestine. Immunoblotting was performed using polyclonal antisera raised against two peptides found in the rat brain NOS sequence and commercial monoclonal antibodies directed against neuronal and endothelial isoforms of NOS. A160kDa band was detected in brain and gastric mucosal samples with antibodies and antisera directed against neuronal NOS sequences, and a 140kDa band was detected in gastric mucosal samples using an anti-endothelial NOS antibody. An intense 160kDa neuronal NOS band was detected in a high-density fraction of gastric mucosal cells separated on a Percoll gradient. Detection of neuronal NOS by a carboxyl-terminal antiserum in samples of brain, but not of gastric mucosa, could be blocked by the peptide (20g/ml) against which the antibody was raised. After affinity purification, recognition of gastric mucosal NOS was blocked by peptide. Particulate neuronal NOS was found in the brain by immunoblotting while 94% of gastric mucosal enzyme was soluble. Gastric mucosal endothelial NOS was 95% particulate. 95% of NOS activity in the gastric mucosa was due to neuronal NOS. Paraformaldehyde- and acetone-fixed gastric mucosal sections were subject to immunocytochemistry using the above antibodies. Neuronal NOS was localised to the surface mucosal epithelial cells while endothelial NOS was associated with microvessels at the base of the mucosa and to larger vessels in the submucosa. Intragastric administration of carbachol or 16, 16-dimethyl prostaglandin E2 increased the thickness of the rat gastric mucus layer. The NOS inhibitor NG-nitro-L-arginine methyl ester dose-dependently, and selectively, prevented the stimulatory effect of carbachol. Ca2+-independent NOS activity in rat ileal, jejunal and colonic muscle was increased after LPS induction. Ca2+-dependent activity was not affected. Distribution of inducible NOS protein paralleled Ca2+ -independent activity. LPS treatment did not affect the content of neuronal NOS in colonic muscle.