2 resultados para RIGID-ROD POLYMER

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4°C, but not when stored at 40°C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40°C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40°C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.