40 resultados para RESONANCES

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterise long period gratings fabricated in endlessly single mode photonic crystal fibres with bulk cladding we perform eigenanalysis of guided modes supported by these fibres. Resonant coupling occurs only when the beating length equals the multiple grating periods. Experimentally obtained grating spectra and sensitivity are fully explained using modified phase matching condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the use of tilted fiber gratings to assist with the generation of infrared surface plasmons on a metal film coating the flat of a D-shaped fiber. The wavelength of the strong (>25 dB) resonance is tunable over similar to 1000 nm by adjusting the polarization state of the light and is highly sensitive to the refractive index of any aqueous medium surrounding the fiber (sensitivity= 3365 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the use of tilted fiber gratings to assist the generation of localized infrared surface plasmons with short propagation lengths and a sensitivity of d lambda/dn = 3365 nm in the aqueous index regime. It was also found that the resonances could be spectrally tuned over 1000 nm at the same spatial region with high coupling efficiency (in excess of 25 dB) by altering the polarization of the light illuminating the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterise long period gratings fabricated in endlessly single mode photonic crystal fibres with bulk cladding we perform eigenanalysis of guided modes supported by these fibres. Resonant coupling occurs only when the beating length equals the multiple grating periods. Experimentally obtained grating spectra and sensitivity are fully explained using modified phase matching condition. © Springer 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the use of tilted fiber gratings to assist the generation of localized infrared surface Plasmons with short propagation lengths and a sensitivity of dλ/dn = 3365 nm in the aqueous index regime. It was also found that the resonances could be spectrally tuned over 1000 nm at the same spatial region with high coupling efficiency (in excess of 25 dB) by altering the polarization of the light illuminating the device. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive eigenmode analysis is performed of the guided modes supported by typical photonic crystal fiber. These modes exhibit unusual phase matching conditions requiring multiple grating periods for resonant coupling. All the signature features of the experimentally observed transmission spectra are explained by multiple-period resonances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A framework that connects computational mechanics and molecular dynamics has been developed and described. As the key parts of the framework, the problem of symbolising molecular trajectory and the associated interrelation between microscopic phase space variables and macroscopic observables of the molecular system are considered. Following Shalizi and Moore, it is shown that causal states, the constituent parts of the main construct of computational mechanics, the e-machine, define areas of the phase space that are optimal in the sense of transferring information from the micro-variables to the macro-observables. We have demonstrated that, based on the decay of their Poincare´ return times, these areas can be divided into two classes that characterise the separation of the phase space into resonant and chaotic areas. The first class is characterised by predominantly short time returns, typical to quasi-periodic or periodic trajectories. This class includes a countable number of areas corresponding to resonances. The second class includes trajectories with chaotic behaviour characterised by the exponential decay of return times in accordance with the Poincare´ theorem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analytically and numerically analyze the occurrence of modulational instability in fibers with periodic changes in the group-velocity dispersion. For small variations, a set of resonances occurs in the gain spectrum. However, large dispersion variations eliminate these resonances and restrict the bandwidth of the fundamental gain spectrum. This research has been motivated by the adoption of dispersion management techniques in long-haul optical communications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the fiber geometry on the point-by-point inscription of fiber Bragg gratings using a femtosecond laser is highlighted. Fiber Bragg gratings with high spectral quality and strong first-order Bragg resonances within the C-band are achieved by optimizing the inscription process. Large birefringence (1.2×10-4) and high degree of polarizationdependent index modulation are observed in these gratings. Potential applications of these gratings in resonators are further illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the study of various grating based optical fibre sensors for applications in refractive index sensing. The sensitivity of these sensors has been studied and in some cases enhanced using novel techniques. The major areas of development are as follows. The sensitivity of long period gratings (LPGs) to surrounding medium refractive index (SRI) for various periods was investigated. The most sensitive period of LPG was found to be around 160 µm and this was due to the core mode coupling to a single cladding mode but phase matching at two wavelength locations, creating two attenuation peaks, close to the waveguide dispersion turning point. Large angle tilted fibre gratings (TFGs) have similar behaviour to LPGs, in that they couple to the co-propagating cladding modes. The tilted structure of the index modulation within the core of the fibre gives rise to a polarisation dependency, differing the large angle TFG from a LPG. Since the large angle TFG couple to the cladding mode they are SRI sensitive, the sensitivity to SRI can be further increased through cladding etching using HF acid. The thinning of the cladding layer caused a reordering of the cladding modes and shifted to more SRI sensitive cladding modes as the investigation discovered. In a SRI range of 1.36 to 1.40 a sensitivity of 506.9 nm/URI was achieved for the etched large angle TFG, which is greater than the dual resonance LPG. UV inscribed LPGs were coated with sol-gel materials with high RIs. The high RI of the coating caused an increase in cladding mode effective index which in turn caused an increase in the LPG sensitivity to SRI. LPGs of various periods of LPG were coated with sol-gel TiO2 and the optimal thickness was found to vary for each period. By coating of the already highly SRI sensitive 160µm period LPG (which is a dual resonance) with a sol-gel TiO2, the SRI sensitivity was further increased with a peak value of 1458 nm/URI, which was an almost 3 fold increase compared to the uncoated LPG. LPGs were also inscribed using a femtosecond laser which produced a highly focused index change which was no uniform throughout the core of the optical fibre. The inscription technique gave rise to a large polarisation sensitivity and the ability to couple to multiple azimuthal cladding mode sets, not seen with uniform UV inscribed gratings. Through coupling of the core mode to multiple sets of cladding modes, attenuation peaks with opposite wavelength shifts for increasing SRI was observed. Through combining this opposite wavelength shifts, a SRI sensitivity was achieved greater than any single observed attenuations peak. The maximum SRI achieved was 1680 nm/URI for a femtosecond inscribed LPG of period 400 µm. Three different types of surface plasmon resonance (SPR) sensors with a multilayer metal top coating were investigated in D shape optical fibre. The sensors could be separated into two types, utilized a pre UV inscribed tilted Bragg grating and the other employed a post UV exposure to generate surface relief grating structure. This surface perturbation aided the out coupling of light from the core but also changed the sensing mechanism from SPR to localised surface plasmon resonance (LSPR). This greatly increased the SRI sensitivity, compared to the SPR sensors; with the gold coated top layer surface relief sensor producing the largest SRI sensitivity of 2111.5nm/URI was achieved. While, the platinum and silver coated top layer surface relief sensors also gave high SRI sensitivities but also the ability to produce resonances in air (not previously seen with the SPR sensors). These properties were employed in two applications. The silver and platinum surface relief devices were used as gas sensors and were shown to be capable of detecting the minute RI change of different gases. The calculated maximum sensitivities produced were 1882.1dB/URI and 1493.5nm/URI for silver and platinum, respectively. Using a DFB laser and power meter a cheap alternative approach was investigated which showed the ability of the sensors to distinguish between different gases and flow rates of those gases. The gold surface relief sensor was coated in a with a bio compound called an aptamer and it was able to detect various concentrations of a biological compound called Thrombin, ranging from 1mM to as low as 10fM. A solution of 2M NaCl was found to give the best stripping results for Thrombin from the aptamer and showed the reusability of the sensor. The association and disassociation constants were calculated to be 1.0638×106Ms-1 and 0.2482s-1, respectively, showing the high affinity of the Aptamer to thrombin. This supports existing working stating that aptamers could be alternative to enzymes for chemical detection and also helps to explain the low detection limit of the gold surface relief sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wire drive pulse echo method of measuring the spectrum of solid bodies described. Using an 's' plane representation, a general analysis of the transient response of such solids has been carried out. This was used for the study of the stepped amplitude transient of high order modes of disks and for the case where there are two adjacent resonant frequencies. The techniques developed have been applied to the measurenent of the elasticities of refractory materials at high temperatures. In the experimental study of the high order in-plane resonances of thin disks it was found that the energy travelled at the edge of the disk and this initiated the work on one dimensional Rayleigh waves.Their properties were established for the straight edge condition by following an analysis similar to that of the two dimensional case. Experiments were then carried out on the velocity dispersion of various circuits including the disk and a hole in a large plate - the negative curvature condition.Theoretical analysis established the phase and group velocities for these cases and experimental tests on aluminium and glass gave good agreement with theory. At high frequencies all velocities approach that of the one dimensional Rayleigh waves. When applied to crack detection it was observed that a signal burst travelling round a disk showed an anomalous amplitude effect. In certain cases the signal which travelled the greater distance had the greater amplitude.An experiment was designed to investigate the phenanenon and it was established that the energy travelled in two nodes with different velocities.It was found by analysis that as well as the Rayleigh surface wave on the edge, a seoond node travelling at about the shear velocity was excited and the calculated results gave reasonable agreement with the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long period grating was photoinscribed step-by-step in microstructured poly(methyl methacrylate) fiber for the first time using a continuous wave HeCd laser at 325 nm, irradiating the fiber with a power of 1 mW. The grating had a length of 2 cm and a period of 1 mm. A series of cladding mode coupling resonances were observed throughout the spectral region studied of 600 to 1100 nm. The resonance wavelengths were shown to be sensitive to the diffusion of water into the fiber.