12 resultados para RESISTANCE PROTEIN

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter expressed at the blood cerebrospinal fluid barrier (BCSFB), and influences distribution of drugs into the central nervous systems (CNS). Current inhibitors have failed clinically due to neurotoxicity. Novel approaches are needed to identify new modulators to enhance CNS delivery. This study examines 18 compounds (mainly phytoestrogens) as modulators of the expression/function of BCRP in an in vitro rat choroid plexus BCSFB model. METHODS: Modulators were initially subject to cytotoxicity (MTT) assessment to determine optimal non-toxic concentrations. Reverse-transcriptase PCR and confocal microscopy were used to identify the presence of BCRP in Z310 cells. Thereafter modulation of the intracellular accumulation of the fluorescent BCRP probe substrate Hoechst 33342 (H33342), changes in protein expression of BCRP (western blotting) and the functional activity of BCRP (membrane insert model) were assessed under modulator exposure. RESULTS: A 24 hour cytotoxicity assay (0.001 µM-1000 µM) demonstrated the majority of modulators possessed a cellular viability IC50 > 148 µM. Intracellular accumulation of H33342 was significantly increased in the presence of the known BCRP inhibitor Ko143 and, following a 24 hour pre-incubation, all modulators demonstrated statistically significant increases in H33342 accumulation (P < 0.001), when compared to control and Ko143. After a 24 hour pre-incubation with modulators alone, a 0.16-2.5-fold change in BCRP expression was observed for test compounds. The functional consequences of this were confirmed in a permeable insert model of the BCSFB which demonstrated that 17-β-estradiol, naringin and silymarin (down-regulators) and baicalin (up-regulator) can modulate BCRP-mediated transport function at the BCSFB. CONCLUSION: We have successfully confirmed the gene and protein expression of BCRP in Z310 cells and demonstrated the potential for phytoestrogen modulators to influence the functionality of BCRP at the BCSFB and thereby potentially allowing manipulation of CNS drug disposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 > 100 µM in both cell systems. BCRP activity, when exposed to modulators for 1 hour, was diminished for most modulators through significant increases in H33342 accumulation at < 10 µM with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7–6.6 fold over 1–100 µM. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75 ± 0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The passage number and origin of two populations of Caco-2 cells influence their enterocyte-like characteristics. Caco-2 cells of passage number >90 from Novartis pharmaceutical company possess higher levels of expression of alkaline phosphatase and P-glycoprotein and a greater cellular uptake of Gly-1.-Pro than those of passage number <40 from the American Type Tissue Culture collection. High P-gp expressing Caco-2 cells have been developed through stepwise selection of the cells with doxonibicin. This newly-developed cell line (hereafter referred to as Type I) possesses approximately twice as much P-gp protein than non-exposed cells, restricts the transepithelial transport of vincristine in the apical-to-basolateral direction whilst facilitating its transport in the reverse direction and accumulates less vincristine than non-exposed cells. There is no apparent evidence of the co-existence of the multidrug resistance protein (MIT) in Type I cells to account for the above-listed observations. Stopping the exposure for more than 28 days decreases the P-gp protein expression in previously doxorubicin-exposed Type I Caco-2 cells and reduces the magnitude of vincristine transepithelial fluxes in both directions to the levels that are almost similar to those of non-exposed cells. Exposing Caco-2 cells to 0.25 JAM la, 25-dihydroxyvitamin D3 induces their expression of cytochrome P450 3A4 protein to the level that is equivalent to that from isolated human jejunal cells. Under the same treatment, doxorubiein-exposed (Type I) cells metabolise naidazolam poorly and less extensively compared to non-exposed cells, suggesting that there is no such co-regulation of P-gp and CYP3A4 in Caco-2 cells. However, there is evidence which suggests CYP3A metabolises mida_zolam into 1- and 4-hydroxymidazolam, the latter may possibly be a P-gp substrate and is transported extracellularly by P-gp, supporting the hypothesis of P-gp-CYP3A4 synergistic roles in keeping xenobiotics out of the body. Doxoru.bicin-exposed (Type I) cells are less effective in translocating L-proline and glycyl-L-proline across the cell mono layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up awide range of possibilities for the future study of their structure and function. © The Authors Journal compilation © 2014 Biochemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological detergents are now routinely used in domestic laundry because the enzymes they contain provide the added benefit of low temperature washes with improved cleaning performance. One of the key enzymes found in these detergents are proteases, which if exposed to natural protein fibres such as wool or silk can cause irreversible damage, leading to loss of fabric strength, shape and poor colour fastness. Transglutaminases (TGases) are protein cross-linking enzymes capable of adding tensile strength to wool proteins, and as a consequence are capable of remediating the damage caused by previous chemical treatments, and more importantly, by proteases. In this paper we treated dyed wool fabric with TGase and then washed the fabric with biological and non-biological detergents to investigate whether TGases would protect wool garments from damage by the undue use of biological detergents in domestic laundry. We demonstrate using different cycles of detergent washes containing biological and non-biological detergents and different TGase treatments, that wool fabric treated previously with TGase release less dye into the washing liquor and in addition maintain fabric strength at levels greater than the washed controls. As a consequence, wool garments previously treated with TGase are likely to have increased resistance to domestic washing and thus provide increased longevity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival studies were conducted on Legionella pneumophila cells that had been grown intracellulary in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), 5-chloro-N-methylisothiazolone (CMIT) and tetradecyltrimethyl ammonium bromide (TTAB). Susceptibilities were also determined for L.pneumophila grown under nutrient sufficient and iron-, nitrogen- and phosphate-depleted conditions, in a chemically defined medium. BIT was relatively ineffective against cells grown under iron-depletion; in contrast iron-depleted conditions increased the susceptibilities of cells to PHMB, TTAB and CMIT. Cells grown under phosphate-depletion showed a marked increase in sensitivity towards all the biocides. Conversely, the activities of all four biocides were greatly reduced against L.pneumophila grown in amoebae. To study the physiological basis for the increased resistance of intra-amoebal grown legionella, the surface properties of the cells were examined by studying outer membrane proteins (OMs), lipopolysaccharides and cellular fatty acids. Intra-amoebal grown legionella were found to differ in several respects compared to cells grown in vitro; they contained a novel 15-kDal OM protein and a monosaturated straight-chain fatty acid (18:19). These compounds were also found in abundant quantities in the host amoeba. Intra-amoebal grown legionella contained more LPS bands than did in vitro grown organisms and were less susceptible to protease K digestion. Cells grown under phosphate depletion were markedly sensitive to protease K digestion and contained lower levels of LPS. Immunoblot analysis of intra-amoebal grown legionella with anti-acanthamoebal serum revealed that both the surface of the bacteria and sarkosyl extracted OMs contained amoebal proteins. These findings suggest that the 15-kDal OM protein is likely to be of amoebal origin and binds tightly to the OM of the bacterium. It is proposed that disruption of amoebal membranes, as a result of intra-amoebal infection liberates macromolecules, including a 15-kDal polypeptide, a major constituent of the membrane, which associates closely with the surface of the legionellae. Thus L.pneumophila which have extraneous membrane material bound to their surface may respond differently to biocide inactivation, as these macromolecules may act as a penetration barrier to such agents. This phenomenon could contribute to the recalcitrance of legionellae in water systems.