3 resultados para REFERENCE SAMPLES
em Aston University Research Archive
Resumo:
Nanoindentation has become a common technique for measuring the hardness and elastic-plastic properties of materials, including coatings and thin films. In recent years, different nanoindenter instruments have been commercialised and used for this purpose. Each instrument is equipped with its own analysis software for the derivation of the hardness and reduced Young's modulus from the raw data. These data are mostly analysed through the Oliver and Pharr method. In all cases, the calibration of compliance and area function is mandatory. The present work illustrates and describes a calibration procedure and an approach to raw data analysis carried out for six different nanoindentation instruments through several round-robin experiments. Three different indenters were used, Berkovich, cube corner, spherical, and three standardised reference samples were chosen, hard fused quartz, soft polycarbonate, and sapphire. It was clearly shown that the use of these common procedures consistently limited the hardness and reduced the Young's modulus data spread compared to the same measurements performed using instrument-specific procedures. The following recommendations for nanoindentation calibration must be followed: (a) use only sharp indenters, (b) set an upper cut-off value for the penetration depth below which measurements must be considered unreliable, (c) perform nanoindentation measurements with limited thermal drift, (d) ensure that the load-displacement curves are as smooth as possible, (e) perform stiffness measurements specific to each instrument/indenter couple, (f) use Fq and Sa as calibration reference samples for stiffness and area function determination, (g) use a function, rather than a single value, for the stiffness and (h) adopt a unique protocol and software for raw data analysis in order to limit the data spread related to the instruments (i.e. the level of drift or noise, defects of a given probe) and to make the H and E r data intercomparable. © 2011 Elsevier Ltd.
Resumo:
In this second article, statistical ideas are extended to the problem of testing whether there is a true difference between two samples of measurements. First, it will be shown that the difference between the means of two samples comes from a population of such differences which is normally distributed. Second, the 't' distribution, one of the most important in statistics, will be applied to a test of the difference between two means using a simple data set drawn from a clinical experiment in optometry. Third, in making a t-test, a statistical judgement is made as to whether there is a significant difference between the means of two samples. Before the widespread use of statistical software, this judgement was made with reference to a statistical table. Even if such tables are not used, it is useful to understand their logical structure and how to use them. Finally, the analysis of data, which are known to depart significantly from the normal distribution, will be described.
Resumo:
The thesis investigates the value of quantitative analyses for historical studies of science through an examination of research trends in insect pest control, or economic entomology. Reviews are made of quantitative studies of science, and historical studies of pest control. The methodological strengths and weaknesses of bibliometric techniques are examined in a special chapter; techniques examined include productivity studies such as paper counts, and relational techniques such as co-citation and co-word analysis. Insect pest control is described. This includes a discussion of the socio-economic basis of the concept of `pest'; a series of classifications of pest control techniques are provided and analysed with respect to their utility for scientometric studies. The chemical and biological approaches to control are discussed as scientific and technological paradigms. Three case studies of research trends in economic entomology are provided. First a scientometric analysis of samples of chemical control and biological control papers; providing quantitative data on institutional, financial, national, and journal structures associated with pest control research fields. Second, a content analysis of a core journal, the Journal of Economic Entomology, over a period of 1910-1985; this identifies the main research innovations and trends, in particular the changing balance between chemical and biological control. Third, an analysis of historical research trends in insecticide research; this shows the rise, maturity and decline of research of many groups of compounds. These are supplemented by a collection of seven papers on scientometric studies of pest control and quantitative techniques for analysing science.