4 resultados para Queensland Fire and Rescue

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

These abstracts form the collection of papers that were presented at the 5th UQ Symposium on Organisational Psychology held at Emmanuel College, University of Queensland, Brisbane, on Saturday 4th June, 2005. The UQ Symposium on Organisational Psychology is an annual event organised by the Centre for Organisational Psychology at the University of Queensland. The aim of the symposium is for academic psychologists to present their latest research to fellow academics and practitioners. Papers were accepted for either paper presentation or poster presentation following a peer-review process. The 75 delegates who attended consisted of practitioners and academics. The inter-state invited speakers were Professor John Cordery (University of Western Australia) and Dr Leisa Sargent (University of Melbourne). The inter-state student speaker was Michelle Pizer (Deakin University). For more information about the UQ Symposium on Organisational Psychology series please contact Robin Martin (r.martin@psy.uq.edu.au).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case law report - online

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heightened threat of terrorism has caused governments worldwide to plan for responding to large-scale catastrophic incidents. In England the New Dimension Programme supplies equipment, procedures and training to the Fire and Rescue Service to ensure the country's preparedness to respond to a range of major critical incidents. The Fire and Rescue Service is involved partly by virtue of being able to very quickly mobilize a large skilled workforce and specialist equipment. This paper discusses the use of discrete event simulation modeling to understand how a fire and rescue service might position its resources before an incident takes place, to best respond to a combination of different incidents at different locations if they happen. Two models are built for this purpose. The first model deals with mass decontamination of a population following a release of a hazardous substance—aiming to study resource requirements (vehicles, equipment and manpower) necessary to meet performance targets. The second model deals with the allocation of resources across regions—aiming to study cover level and response times, analyzing different allocations of resources, both centralized and decentralized. Contributions to theory and practice in other contexts (e.g. the aftermath of natural disasters such as earthquakes) are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first investigation of this study is concerned with the reasonableness of the assumptions related to diffusion of water vapour in concrete and with the development of a diffusivity equation for heated concrete. It has been demonstrated that diffusion of water vapour does occur in concrete at all temperatures and that the type of diffusion is concrete is Knudsen diffusion. Neglecting diffusion leads to underestimating the pressure. It results in a maximum pore pressure of less than 1 MPa. It has also been shown that the assumption that diffusion in concrete is molecular is unreasonable even when the tortuosity is considered. Molecular diffusivity leads to overestimating the pressure. It results in a maximum pore pressure of 2.7 MPa of which the vapour pressure is 1.5 MPa while the air pressure is 1.2 MPa. Also, the first diffusivity equation, appropriately named 'concrete diffusivity', has been developed specifically for concrete that determines the effective diffusivity of any gas in concrete at any temperature. In thick walls and columns exposed to fire, concrete diffusivity leads to a maximum pore pressures of 1.5 and 2.2 MPa (along diagonals), respectively, that are almost entirely due to water vapour pressure. Also, spalling is exacerbated, and thus higher pressures may occur, in thin heated sections, since there is less of a cool reservoir towards which vapour can migrate. Furthermore, the reduction of the cool reservoir is affected not only by the thickness, but also by the time of exposure to fire and by the type of exposure, i.e. whether the concrete member is exposed to fire from one or more sides. The second investigation is concerned with examining the effects of thickness and exposure time and type. It has been demonstrated that the build up of pore pressure is low in thick members, since there is a substantial cool zone towards which water vapour can migrate. Thus, if surface and/or explosive spalling occur on a thick member, then such spalling must be due to high thermal stresses, but corner spalling is likely to be pore pressure spalling. However, depending on the exposure time and type, the pore pressures can be more than twice those occurring in thick members and thought to be the maximum that can occur so far, and thus the enhanced propensity of pore pressure spalling occurring on thin sections heated on opposite sides has been conclusively demonstrated to be due to the lack of a cool zone towards which moisture can migrate. Expressions were developed for the determination of the maximum pore pressures that can occur in different concrete walls and columns exposed to fire and of the corresponding times of exposure.