5 resultados para Quasi-Uniform Space
em Aston University Research Archive
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
Previous contrast discrimination experiments have shown that luminance contrast is summed across ocular (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) and spatial (T. S. Meese & R. J. Summers, 2007) dimensions at threshold and above. However, is this process sufficiently general to operate across the conjunction of eyes and space? Here we used a "Swiss cheese" stimulus where the blurred "holes" in sine-wave carriers were of equal area to the blurred target ("cheese") regions. The locations of the target regions in the monocular image pairs were interdigitated across eyes such that their binocular sum was a uniform grating. When pedestal contrasts were above threshold, the monocular neural images contained strong evidence that the high-contrast regions in the two eyes did not overlap. Nevertheless, sensitivity to dual contrast increments (i.e., to contrast increments in different locations in the two eyes) was a factor of ∼1.7 greater than to single increments (i.e., increments in a single eye), comparable with conventional binocular summation. This provides evidence for a contiguous area summation process that operates at all contrasts and is influenced little, if at all, by eye of origin. A three-stage model of contrast gain control fitted the results and possessed the properties of ocularity invariance and area invariance owing to its cascade of normalization stages. The implications for a population code for pattern size are discussed.
Resumo:
The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.
Resumo:
Non-uniform B-spline dictionaries on a compact interval are discussed in the context of sparse signal representation. For each given partition, dictionaries of B-spline functions for the corresponding spline space are built up by dividing the partition into subpartitions and joining together the bases for the concomitant subspaces. The resulting slightly redundant dictionaries are composed of B-spline functions of broader support than those corresponding to the B-spline basis for the identical space. Such dictionaries are meant to assist in the construction of adaptive sparse signal representation through a combination of stepwise optimal greedy techniques.
Resumo:
The quantization scheme is suggested for a spatially inhomogeneous 1+1 Bianchi I model. The scheme consists in quantization of the equations of motion and gives the operator (so called quasi-Heisenberg) equations describing explicit evolution of a system. Some particular gauge suitable for quantization is proposed. The Wheeler-DeWitt equation is considered in the vicinity of zero scale factor and it is used to construct a space where the quasi-Heisenberg operators act. Spatial discretization as a UV regularization procedure is suggested for the equations of motion.