6 resultados para Quartz and aluminosilicate mineral
em Aston University Research Archive
Resumo:
Modern electron optical techniques together with X-ray and mineralogical examination have been used to study the occurrence and form of phosphorus bearing minerals in iron ores. Three ores have been studied - Bahariya and Aswan from Egypt and Frodingham ironstone from U.K. The iron in the Bahariya iron ore is mainly as hematite and goethite. The gangue minerals are halite, gypsum, barytes, quartz and calcite. Iron content is between 49.8 to 63.2% and phosphorus 0.14 to 0.34%. The phosphorus occurs as very fine particles of apatite which are distributed throughout the ore. Removal of the phosphorus would require very fine grinding followed by acid leaching. Aswan iron ore is an oolitic iron ore; the iron content between 41-57% and phosphorus content 0.1 to 2.9%. It is mainly hematitic with variable quantities of quartz, apatite and small amount of clay minerals. In the oolitic iron ore beds, apatite occurs in the hematite matrix; filling in the pores of the oolithic surfaces, or as matrix cementing the ooliths with the hematite grains. In sandstone claybeds the distribution of the apatite is mainly in the matrix. It is suggested that the liberation size for the apatite would be -80 m and flotation concentration could be applied for the removal of apatite from Aswan ore. Frodingham ironstone occurs in the lower Jurassic bed of the South Humberside area. The average iron content is 25% and the phosphorus is 0.32%. Seven mineral phases were identified by X-ray; calcite, quartz, chamosite, hematite, siderite, apatite, and chlorite. Apatite occurs as very fine grains in the hematite and chamosite ooliths; as matrix of fine grains intergrown with chamosite and calcite grains; and as anhedral and sub rounded grains in the ooliths (8-28 m). It is suggested that two processes are possible for the dephosphorisation; the Flox process or a reduction roast followed by fine grinding, magnetic separation, and acid leaching.
Resumo:
Pilot scale studies of high rate filtration were initiated to assess its potential as either a primary 'roughing' filter to alleviate the seasonal overloading of low rate filters on Hereford sewage treatment works - caused by wastes from cider production - or as a two stage high rate process to provide complete sewage treatment. Four mineral and four plastic primary filter media and two plastic secondary filter media were studied. The hydraulic loading applied to the primary plastic media (11.2 m3 /m3 .d) was twice that applied to the mineral media. The plastic media removed an average around 66 percent and the mineral media around 73 percent of the BOD applied when the 90 percentile BOD concentration was 563 mg/1. At a hydraulic loading of 4 m3 /m3 .d the secondary filters removed most of the POD from partially settled primary filter effluents, with one secondary effluent satisfying a 25 mg/1 BOD and 30 mg/1 SS standard. No significant degree of nitrification was achieved. Fungi dominated the biological film of the primary filters, with invertebrate grazers having little influence on film levels. Ponding did not arise, and modular media supported lower film levels than random-fill types. Secondary filter film levels were low, being dominated by bacteria. The biological loading applied to the filters was related to sludge dewaterability, with the most readily conditionable sludges produced by filters supporting heavy film. Sludges produced by random-fill media could be dewatered as readily as those produced by low rate filters treating the same sewage. Laboratory scale studies showed a relationship between log effluent BOD and nitrification achieved by biological filters. This relationship and the relationship between BOD load applied and removed observed in all filter media could he used to optimise operating conditions required in biological filters to achieve given effluent BOD and ammoniacal nitrogen standards.
Resumo:
The thesis provides a comparative study of both sedimentology and diagenesis of Lower Permian (Rotliegend) strata, onshore and offshore U.K. (Southern North Sea). Onshore formations studied include the Bridgnorth, Penrith and Hopeman Sandstone, and are dominated by aeolian facies, with lesser amounts of interbedded fluvial sediments. Aeolian and fluvial strata in onshore basins typically grade laterally into alluvial fan breccias at basin margins. Onshore basins represent proximal examples of Rotliegend desert sediments. The Leman Sandstone Formation of the Ravenspurn area in the Southern North Sea displays a variety of facies indicative of a distal sedimentological setting; Aeolian, fluvial, sabkha, and playa lake sediments all being present. "Sheet-like" geometry of stratigraphical units within the Leman Sandstone, and alternation of fluvial and aeolian deposition was climatically controlled. Major first order bounding surfaces are laterally extensive and were produced by lacustrine transgression and regression from the north-west. Diagenesis within Permian strata was studied using standard petrographic microscopy, scanning electron microscopy, cold cathodo-Iuminescence, X-ray diffraction clay analysis, X-ray fluorescence spectroscopy, fluid inclusion microthermometry, and K-Ar dating of illites. The diagenesis of Permian sediments within onshore basins is remarkably similar, and a paragenetic sequence of early haematite, illitic clays, feldspar, kaolinite, quartz and late calcite is observed. In the Leman Sandstone formation, authigenic mineralogy is complex and includes early quartz, sulphates and dolomite, chlorite, kaolinite, late quartz, illite and siderite. Primary lithological variation, facies type, and the interdigitation and location of facies within a basin are important initial controls upon diagenesis. Subsequently, burial history, structure, the timing of gas emplacement, and the nature of sediments within underlying formations may also exersize significant controls upon diagenesis within Rotliegend strata.
Resumo:
Humic substances are the major organic constituents of soils and sediments. They are heterogeneous, polyfunctional, polydisperse, macromolecular and have no accurately known chemical structure. Their interactions with radionuclides are particularly important since they provide leaching mechanisms from disposal sites. The central theme to this research is the interaction of heavy metal actinide analogues with humic materials. Studies described focus on selected aspects of the characteristics and properties of humic substances. Some novel approaches to experiments and data analysis are pursued. Several humic substances are studied; all but one are humic acids, and those used most extensively were obtained commercially. Some routine characterisation techniques are applied to samples in the first instance. Humic substances are coloured, but their ultra-violet and visible absorption spectra are featureless. Yet, they fluoresce over a wide range of wavelengths. Enhanced fluorescence in the presence of luminescent europium(III) ions is explained by energy transfer from irradiated humic acid to the metal ion in a photophysical model. Nuclear magnetic resonance spectroscopy is applied to the study of humic acids and their complexes with heavy metals. Proton and carbon-13 NMR provides some structural and functionality information; Paramagnetic lanthanide ions affect these spectra. Some heavy metals are studied as NMR nuclei, but measurements are restricted by their sensitivity. A humic acid is fractionated yielding a broad molecular weight distribution. Electrophoretic mobilities and particle radii determined by Laser Doppler Electrophoretic Light Scattering are sensitive to the conditions of the supporting media, and the concentration and particle size distribution of humic substances. In potentiometric titrations of humate dispersions, the organic matter responds slowly and the mineral acid addition is buffered. Proton concentration data is modelled and a mechanism is proposed involving two key stages, both resulting in proton release after some conformational changes.
Resumo:
The effect of mechano-chemically bound polypropylene modifiers on the mechanical performance and thermal-oxidative stability of polypropylene composites has been studied. The mechanical performance of unmodified polypropylene containing silane coupled glass and Rockwool (mineral) fibre was poor by comparison with a similar commercially produced glass reinforced composite; this was attributed to poor fibre-matrix adhesion. Mechano-chemical binding with unsaturated additives was obtained in the presence of a free radical initiator (di-cumyl peroxide). This process was inhibited by stabilisers present in commercial grades of polypropylene composites by chemical bond formation between the chemically bound modifier and the silane coupling agent on the fibre surface, resulting in a dramatic improvement in the mechanical properties, dimensional stability and retention of mechanical performance after immersion in fluids typically found in under-bonnet environments.A feature unique to some of these modifiers was their ability not only to enhance the mechanical properties of polypropylene composites to levels substantially in excess of currently available commercial materials, but their ability to act as effective thermal-oxidative polypropylene stabilisers. The mode of action was shown to be a chain-breaking mechanism and as a result of the high binding levels achieved during melt processing, these modifiers were able to efficiently stabilise polypropylene in the most severe volatilising and solvent-extracting environments, thus giving much better protection to the polymer than currently available commercially stabilised grades of polypropylene.
Resumo:
This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.