5 resultados para Quantity control

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been previously established that alkali silica reaction (ASR) in concrete may be controlled by blending Portland cement with suitable hydraulic or pozzolanic materials. The controlling mechanism has been attributed to the dilution of the cement's alkali content and reduced mobility of ions in concrete's pore solution. In this project an attempt has been made to identify the factors which influence the relative importance of each mechanism in the overall suppression of the reaction by the use of blended cements. The relationship between the pore solution alkalinity and ASR was explored by the use of expansive mortar bars submerged in alkaline solutions of varying concentration. This technique enabled the blended cement's control over expansion to be assessed at given `pore solution' alkali concentrations. It was established that the cement blend, the concentration and quantity of alkali present in the pore solution were the factors which determined the rate and extent of ASR. The release of alkalis into solution by Portland cements of various alkali content was studied by analysis of pore solution samples expressed from mature specimens. The specification for avoiding ASR by alkali limitation, both by alkali content of cement and the total quantity of alkali were considered. The effect on the pore solution alkalinity when a range of Portland cements were blended with various replacement materials was measured. It was found that the relationship between the type of replacement material, its alkali content and that of the cement were the factors which primarily determined the extent of the pore solution alkali dilution effect. It was confirmed that salts of alkali metals of the kinds found as common concrete contaminants were able to increase the pore solution hydroxyl ion concentration significantly. The increase was limited by the finite anion complexing ability of the cement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with the background, development and description of a mathematical stock control methodology for use within an oil and chemical blending company, where demand and replenishment lead-times are generally non-stationary. The stock control model proper relies on, as input, adaptive forecasts of demand determined for an economical forecast/replenishment period precalculated on an individual stock-item basis. The control procedure is principally that of the continuous review, reorder level type, where the reorder level and reorder quantity 'float', that is, each changes in accordance with changes in demand. Two versions of the Methodology are presented; a cost minimisation version and a service level version. Realising the importance of demand forecasts, four recognised variations of the Trigg and Leach adaptive forecasting routine are examined. A fifth variation, developed, is proposed as part of the stock control methodology. The results of testing the cost minimisation version of the Methodology with historical data, by means of a computerised simulation, are presented together with a description of the simulation used. The performance of the Methodology is in addition compared favourably to a rule-of-thumb approach considered by the Company as an interim solution for reducing stack levels. The contribution of the work to the field of scientific stock control is felt to be significant for the following reasons:- (I) The Methodology is designed specifically for use with non-stationary demand and for this reason alone appears to be unique. (2) The Methodology is unique in its approach and the cost-minimisation version is shown to work successfully with the demand data presented. (3) The Methodology and the thesis as a whole fill an important gap between complex mathematical stock control theory and practical application. A brief description of a computerised order processing/stock monitoring system, designed and implemented as a pre-requisite for the Methodology's practical operation, is presented as an appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inventory control in complex manufacturing environments encounters various sources of uncertainity and imprecision. This paper presents one fuzzy knowledge-based approach to solving the problem of order quantity determination, in the presence of uncertain demand, lead time and actual inventory level. Uncertain data are represented by fuzzy numbers, and vaguely defined relations between them are modeled by fuzzy if-then rules. The proposed representation and inference mechanism are verified using a large numbers of examples. The results of three representative cases are summarized. Finally a comparison between the developed fuzzy knowledge-based and traditional, probabilistic approaches is discussed.