4 resultados para Quantitative trait locus (QTL)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eight cases of progressive supranuclear palsy (PSP), neurofibrillary tangles (NFT) were numerous in the substantia nigra (SN), red nucleus (RN), locus caeruleus (LC), pontine nuclei (PN), and inferior olivary nucleus (ION) and abnormally enlarged neurons (EN) in the ION, LC and PN. Loss of Purkinje cells was evident in the cerebellum. Tufted astrocytes (TA) were abundant in the striatum, SN and RN and glial inclusions ('coiled bodies') (GI) in the midbrain (SN, RN) and pons (LC). Neuritic plaques were frequent in one case. NFT, GI, and TA densities were uncorrelated in most areas. NFT and EN densities were positively correlated in the midbrain and surviving neurons and disease duration in several areas. These results suggest: 1) predominantly subcortical pathology in PSP with widespread NFT while TA and GI have a more localized distribution, 2) little correlation between neuronal and glial pathologies, and 3) shorter duration cases may be more likely to develop cortical pathology. © 2007 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10-9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development. © 2013 Brandler et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently reported the association of the PCSK6 gene with handedness through a quantitative genome-wide association study (GWAS; P < 0.5 × 10(-8)) for a relative hand skill measure in individuals with dyslexia. PCSK6 activates Nodal, a morphogen involved in regulating left-right body axis determination. Therefore, the GWAS data suggest that the biology underlying the patterning of structural asymmetries may also contribute to behavioural laterality, e.g. handedness. The association is further supported by an independent study reporting a variable number tandem repeat (VNTR) within the same PCSK6 locus to be associated with degree of handedness in a general population cohort. Here, we have conducted a functional analysis of the PCSK6 locus combining further genetic analysis, in silico predictions and molecular assays. We have shown that the previous GWAS signal was not tagging a VNTR effect, suggesting that the two markers have independent effects. We demonstrated experimentally that one of the top GWAS-associated markers, rs11855145, directly alters the binding site for a nuclear factor. Furthermore, we have shown that the predicted regulatory region adjacent to rs11855415 acts as a bidirectional promoter controlling the expression of novel RNA transcripts. These include both an antisense long non-coding RNA (lncRNA) and a short PCSK6 isoform predicted to be coding. This is the first molecular characterization of a handedness-associated locus that supports the role of common variants in non-coding sequences in influencing complex phenotypes through gene expression regulation.