14 resultados para Push-pull small molecules
em Aston University Research Archive
Resumo:
Matrix application continues to be a critical step in sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Imaging of small molecules such as drugs and metabolites is particularly problematic because the commonly used washing steps to remove salts are usually omitted as they may also remove the analyte, and analyte spreading is more likely with conventional wet matrix application methods. We have developed a method which uses the application of matrix as a dry, finely divided powder, here referred to as dry matrix application, for the imaging of drug compounds. This appears to offer a complementary method to wet matrix application for the MALDI-MSI of small molecules, with the alternative matrix application techniques producing different ion profiles, and allows the visualization of compounds not observed using wet matrix application methods. We demonstrate its value in imaging clozapine from rat kidney and 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylic acid from rat brain. In addition, exposure of the dry matrix coated sample to a saturated moist atmosphere appears to enhance the visualization of a different set of molecules.
Resumo:
Introduction: Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. Areas covered: This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. Expert opinion: SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.
Resumo:
Background Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs. Significance Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
Molecular gelators are currently receiving a great deal of attention. These are small molecules which, under the appropriate conditions, assemble in solution to, in the majority of cases, give long fibrillar structures which entangle to form a three-dimensional network. This immobilises the solvent, resulting in a gel. Such gelators have potential application in a number of important areas from drug delivery to tissue engineering. Recently, the use of peptide-conjugates has become prevalent with oligopeptides (from as short as two amino acids in length) conjugated to a polymer, alkyl chain or aromatic group such as naphthalene or fluorenylmethoxycarbonyl (Fmoc) being shown to be effective molecular gelators. The field of gelation is extremely large; here we focus our attention on the use of these peptide-conjugates as molecular hydrogelators.
Resumo:
Purpose – This paper aims to provide a critical analysis of UK Government policy in respect of recent moves to attract young people into engineering. Drawing together UK and EU policy literature, the paper considers why young people fail to look at engineering positively. Design/methodology/approach – Drawing together UK policy, practitioner and academic-related literature the paper critically considers the various factors influencing young people's decision-making processes in respect of entering the engineering profession. A conceptual framework providing a diagrammatic representation of the “push” and “pull” factors impacting young people at pre-university level is given. Findings – The discussion argues that higher education in general has a responsibility to assist young people overcome negative stereotypical views in respect of engineering education. Universities are in the business of building human capability ethically and sustainably. As such they hold a duty of care towards the next generation. From an engineering education perspective, the major challenge is to present a relevant and sustainable learning experience that will equip students with the necessary skills and competencies for a lifelong career in engineering. This may be achieved by promoting transferable skills and competencies or by the introduction of a capabilities-driven curriculum which brings together generic and engineering skills and abilities. Social implications – In identifying the push/pull factors impacting young people's decisions to study engineering, this paper considers why, at a time of global recession, young people should select to study the required subjects of mathematics, science and technology necessary to study for a degree in engineering. The paper identifies the long-term social benefits of increasing the number of young people studying engineering. Originality/value – In bringing together pedagogy and policy within an engineering framework, the paper adds to current debates in engineering education providing a distinctive look at what seems to be a recurring problem – the failure to attract young people into engineering.
Resumo:
Isoguanosine-containing dendritic small molecules self-assemble into decameric nucleodendrimers as observed by 1D NMR spectroscopy, 2D DOSY, and mass spectrometry. In particular, apolar building blocks readily form pentameric structures in acetonitrile while the presence of alkali metals promotes the formation of stable decameric assemblies with a preference for cesium ions. Remarkably, co-incubation of guanosine and isoguanosine-containing nucleodendrons results in the formation of decameric structures in absence of added salts. Further analysis of the mixture indicated that guanosine derivatives facilitate the formation, but are not involved in decameric structures; a process reminiscent of molecular crowding. This molecular system provides a powerful canvas for the rapid and modular assembly of polyfunctional dendritic macromolecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Lyophilisation or freeze drying is the preferred dehydrating method for pharmaceuticals liable to thermal degradation. Most biologics are unstable in aqueous solution and may use freeze drying to prolong their shelf life. Lyophilisation is however expensive and has seen lots of work aimed at reducing cost. This thesis is motivated by the potential cost savings foreseen with the adoption of a cost efficient bulk drying approach for large and small molecules. Initial studies identified ideal formulations that adapted well to bulk drying and further powder handling requirements downstream in production. Low cost techniques were used to disrupt large dried cakes into powder while the effects of carrier agent concentration were investigated for powder flowability using standard pharmacopoeia methods. This revealed superiority of crystalline mannitol over amorphous sucrose matrices and established that the cohesive and very poor flow nature of freeze dried powders were potential barriers to success. Studies from powder characterisation showed increased powder densification was mainly responsible for significant improvements in flow behaviour and an initial bulking agent concentration of 10-15 %w/v was recommended. Further optimisation studies evaluated the effects of freezing rates and thermal treatment on powder flow behaviour. Slow cooling (0.2 °C/min) with a -25°C annealing hold (2hrs) provided adequate mechanical strength and densification at 0.5-1 M mannitol concentrations. Stable bulk powders require powder transfer into either final vials or intermediate storage closures. The targeted dosing of powder formulations using volumetric and gravimetric powder dispensing systems where evaluated using Immunoglobulin G (IgG), Lactate Dehydrogenase (LDH) and Beta Galactosidase models. Final protein content uniformity in dosed vials was assessed using activity and protein recovery assays to draw conclusions from deviations and pharmacopeia acceptance values. A correlation between very poor flowability (p<0.05), solute concentration, dosing time and accuracy was revealed. LDH and IgG lyophilised in 0.5 M and 1 M mannitol passed Pharmacopeia acceptance values criteria with 0.1-4 while formulations with micro collapse showed the best dose accuracy (0.32-0.4% deviation). Bulk mannitol content above 0.5 M provided no additional benefits to dosing accuracy or content uniformity of dosed units. This study identified considerations which included the type of protein, annealing, cake disruption process, physical form of the phases present, humidity control and recommended gravimetric transfer as optimal for dispensing powder. Dosing lyophilised powders from bulk was demonstrated as practical, time efficient, economical and met regulatory requirements in cases. Finally the use of a new non-destructive technique, X-ray microcomputer tomography (MCT), was explored for cake and particle characterisation. Studies demonstrated good correlation with traditional gas porosimetry (R2 = 0.93) and morphology studies using microscopy. Flow characterisation from sample sizes of less than 1 mL was demonstrated using three dimensional X-ray quantitative image analyses. A platinum-mannitol dispersion model used revealed a relationship between freezing rate, ice nucleation sites and variations in homogeneity within the top to bottom segments of a formulation.
Resumo:
Cholecystokinin (CCK) is a peptide hormone, present in the alimentary and the CNS. It is the most abundant peptide in the brain. CCK has been implicated in a number of disorders. The link between CCK and anxiety was the basis for this research. A comprehensive discussion on the many types of CCK receptor antagonists is included. For the drug discovery process, a number of synthetic approaches have been investigated and alternative chemical approaches developed. 1,4-Benzodiazepine analogues were prepared, with substitutents In the 1,2 & 3- position of the benzodiazepine scaffold varied, and substituted 3-anilino benzodiazepines exhibited the greatest in vitro activity towards the CCKA receptor subtype. Through extensive screening, pyrazolinone-ureido derivatives were identified, optimised, SAR studied and re-screened. A comprehensive in vivo study on the most active analogue is included, which has a number of common structural features with L-36S, 260 including activity. Pyrazolinone-amide derivatives, bearing the tryptophan moiety were equally active. A number of existing and novel furan- 2(SH)-one building blocks were prepared, from which a selected mini-library of 4- amino-substituted furan-2(SH)-ones were prepared and evaluated. All synthesised compounds were evaluated in a CCK radiolabelled binding assay (CCKA & CCKB), with compounds demonstrating receptor selectivity and lead structures being discovered. The work in this thesis has identified a number of highly active prime structures, from which further investigations are essential in providing more in vitro & in vivo data and the need to prepare more analogues.
Resumo:
The aim of this paper is to explore the management of information in an aerospace manufacturer's supply chain by analysing supply chain disruption risks. The social network perspective will be used to examine the flows of information in the supply chain. The examination of information flows will also be explored in terms of push and pull information management. The supply chain risk management (SCRM) strategy is to assess the management of information that allows companies to gather information which will allow them to mitigate that risk before any disruption to the supply chain occurs. There is a shortage of models in analysing the supply chain risk associated with information flows, possibly due to the omission of appropriate modelling techniques in this area (Tang and Nurmaya, 2011). This paper uses an exploratory case study consisting of a multi method qualitative approach using fifteen interviews and four focus groups.
Resumo:
The contribution of this thesis is in understanding the origins in developing countries of differences in labour wage and household consumption vis-à-vis educational abilities (and by extension employment statuses). This thesis adds to the labour market literature in developing countries by investigating the nature of employment and its consequences for labour wage and household consumption in a developing country. It utilizes multinomial probit, blinder-oaxaca, Heckman and quantile regressions to examine one human capital indicator: educational attainment; and two welfare proxies: labour wage and household consumption, in a developing country, Nigeria. It finds that, empirically, the self-employed are a heterogeneous group of individuals made up of a few highly educated individuals, and a significant majority of ‘not so educated’ individuals who mostly earn less than paid workers. It also finds that a significant number of employers enjoy labour wage premiums; and having a higher proportion of employers in the household has a positive relationship with household consumption. The thesis furthermore discovers an upper educational threshold for women employers not found for men. Interestingly, the thesis also finds that there is indeed an ordering of labour wages into low-income self-employment (which seems to be found mainly in “own account” self-employment), medium-income paid employment, and high-income self-employment (which seems to be found mainly among employers), and that this corresponds to a similar ordering of low human capital, medium human capital and high human capital among labour market participants, as expressed through educational attainments. These show that as a whole, employers can largely be classed as experiencing pulled self-employment, as they appear to be advantaged in all three criteria (educational attainments, labour wage and household consumption). A minority of self-employed “own account” workers (specifically those at the upper end of the income distribution who are well educated), can also be classed as experiencing pulled self-employment. The rest of the significant majority of self-employed “own account” workers in this study can be classed as experiencing pushed self-employment in terms of the indicators used.
Resumo:
A comprehensive survey of industrial sites and heat recovery products revealed gaps between equipment that was required and that which was available. Two heat recovery products were developed to fill those gaps: a gas-to-gas modular heat recovery unit; a gas-to-liquid exhaust gas heat exchanger. The former provided an entire heat recovery system in one unit. It was specifically designed to overcome the problems associated with existing component system of large design commitment, extensive installation and incompatibility between parts. The unit was intended to recover heat from multiple waste gas sources and, in particular, from baking ovens. A survey of the baking industry defined typical waste gas temperatures and flow rates, around which the unit was designed. The second unit was designed to recover heat from the exhaust gases of small diesel engines. The developed unit differed from existing designs by having a negligible effect on engine performance. In marketing terms these products are conceptual opposites. The first, a 'product-push' product generated from site and product surveys, required marketing following design. The second, a 'market-pull' product, resulted from a specific user need; this had a captive market and did not require marketing. Here marketing was replaced by commercial aspects including the protection of ideas, contracting, tendering and insurance requirements. These two product development routes are compared and contrasted. As a general conclusion this work suggests that it can be beneficial for small companies (as was the sponsor of this project) to undertake projects of the market-pull type. Generally they have a higher probability of success and are less capital intensive than their product-push counterparts. Development revealed shortcomings in three other fields: British Standards governing heat exchangers; financial assessment of energy saving schemes; degree day procedure of calculating energy savings. Methods are proposed to overcome these shortcomings.
Resumo:
Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.
Resumo:
A new bridge technique for the measurement of the dielectric absorption of liquids and solutions at microwave frequencies has been described and its accuracy assessed. 'l'he dielectric data of the systems studied is discussed in terms of the relaxation processes contributing to the dielectric absorption and the apparent dipole moments. Pyridine, thiophen and furan in solution have a distribution of relaxation times which may be attributed to the small size of the solute molecules relative to the solvent. Larger rigid molecules in solution were characterized by a single relaxation time as would be anticipated from theory. The dielectric data of toluene, ethyl-, isopropyl- and t-butylbenzene as pure liquids and in solution were described by two relaxation times, one identified with molecular re-orientation and a shorter relaxation time.· The subsequent work was investigation of the possible explanations of this short relaxation process. Comparable short relaxation times were obtained from the analysis of the dielectric data of solutions of p-chloro- and p-bromotoluene below 40°C, o- and m-xylene at 25°C and 1-methyl- and 2 methylnaphthalene at 50 C. Rigid molecules of similar shapes and sizes were characterized by a single relaxation time identified with molecular re-orientation. Contributions from a long relaxation process attributed to dipolar origins were reported for solutions of nitrobenzene, benzonitrile and p-nitrotoluene. A short relaxation process of possible dipolar origins contributed to the dielectric absorption of 4-methyl- and 4-t-butylpyridine in cyclohexane at 25°C. It was concluded that the most plausible explanation of the short relaxation process of the alkyl-aryl hydrocarbons studied appears to be intramolecular relaxation about the alkyl-aryl bond. Finally the mean relaxation times of some phenylsubstituted compounds were investigated to evaluate any shortening due to contributions from the process of relaxation about the phenyl-central atom bond. The relaxation times of triphenylsilane and phenyltrimethylsilane were significantly short.
Resumo:
In today’s modern manufacturing industry there is an increasing need to improve internal processes to meet diverse client needs. Process re-engineering is an important activity that is well understood by industry but its rate of application within small to medium size enterprises (SME) is less developed. Business pressures shift the focus of SMEs toward winning new projects and contracts rather than developing long-term, sustainable manufacturing processes. Variations in manufacturing processes are inevitable, but the amount of non-conformity often exceeds the acceptable levels. This paper is focused on the re-engineering of the manufacturing and verification procedure for discrete parts production with the aim of enhancing process control and product verification. The ideologies of the ‘Push’ and ‘Pull’ approaches to manufacturing are useful in the context of process re-engineering for data improvement. Currently information is pulled from the market and prominent customers, and manufacturing companies always try to make the right product, by following customer procedures that attempt to verify against specifications. This approach can result in significant quality control challenges. The aim of this paper is to highlight the importance of process re-engineering in product verification in SMEs. Leadership, culture, ownership and process management are among the main attributes required for the successful deployment of process re-engineering. This paper presents the findings from a case study showcasing the application of a modified re-engingeering method for the manufacturing and verification process. The findings from the case study indicate there are several advantages to implementing the re-engineering method outlined in this paper.