3 resultados para Pupillary reflexes

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that (lie accommodative level remained approximately constant (<0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30mm). The pupillary response to an isoluminant grating was sustained, delayed by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r2 = 0.99) by a straight line with a positive slope. The results indicate that a [L-M] linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature suggests that there may be pupil size and response abnormalities in migraine headache sufferers. We used an infra-red pupillometer to measure dynamic pupil responses to light in 20 migraine sufferers (during non-headache periods) and 16 non-migraine age and gender matched controls. There was a significant increase in the absolute inter-ocular difference of the latency of the pupil light response in the migraine group compared with the controls (0.062 s vs 0.025 s, p = 0.014). There was also a significant correlation between anisocoria and lateralisation of headache such that migraine sufferers with a habitual head pain side have more anisocoria (r= 0.59, p < 0.01), but this was not related to headache laterally. The pupil changes were not correlated with the interval since the last migraine headache, the severity of migraine headache or the number of migraine headaches per annum. We conclude that subtle sympathetic and parasympathetic pupil abnormalities persist in the inter-ictal phase of migraine. © 2005 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We have reported that the changes in the pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al. PLoS One, 2014). This study investigates the changes in the pupillary shapes in response to electrical stimulations of the sclera of peripheral cornea in cats and porcines. Methods: Two enucleated eyes of two cats and three enucleated porcine eyes were studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter). The stimulation was performed at every 45 degree over the entire circular region on the sclera near the cornea. The pupillary images were recorded before and 4 s (cat) and 10 s (pig) after the stimulation and the change in the pupil diameter (Δr) was quantified. The pupillary images were obtained with a custom-built compact wavefront aberrometer (Uday et al. J Cataract Refract Surg, 2013). Results: In a cat eye, the pupil was dilated by the electrical stimulation at six out of eight orientations (before stimulation pupil diameter r=10.10±0.49 mm, Δr=0.33±0.12 mm). The pupil dilated only toward the electrode (relative eccentricity of the pupil center to the pupil diameter change amount rdec=1.15±0.28). In the porcine eyes, the pupils were constricted by the electrical stimulations at the temporal and nasal orientations (r=10.04±0.57 mm, Δr=1.52±0.70 mm). The pupils contracted symmetrically (rdec=0.30±0.12). Conclusions: With electrical stimulation in the sclera of the peripheral cornea, asymmetric mydriasis in cat eyes and symmetrical miosis in porcine eyes were observed. Under the assumption that the electrical stimulation stimulated both muscles that contribute to the pupil control, our hypothesis proposed here is that the pupil dilator is stronger than the pupil sphincter in cat, and pupil sphincter is stronger than pupil dilator in porcine.