18 resultados para Pull-In Parameters
em Aston University Research Archive
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.
Resumo:
In this paper we describe the design and fabrication of a mechanical autonomous impact oscillator with a MEMS resonator as the frequency control element. The design has been developed with scalability to large 2-D arrays of coupled oscillators in mind. The dynamic behaviour of the impact oscillator was numerically studied and it was found that the geometry nonlinearity has an effect on the static pull-in voltage and equilibrium position. The external driving power can alter the frequency of the impact oscillator. The autonomous nature of the oscillator simplifies the complexity of the drive circuitry and is essential for large 2-D arrays.
Resumo:
This paper presents a novel methodology to infer parameters of probabilistic models whose output noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in parameters to nonlinear multi-layer perceptrons (MLPs). We used an EM algorithm combined with variational approximation, the evidence procedure, and an optimisation algorithm. The technique was tested on two regression applications. The first one is a synthetic dataset and the second is gas forward contract prices data from the UK energy market. The results showed that forecasting accuracy is significantly improved by using Student-t noise models.
Resumo:
This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.
Resumo:
We present a framework for calculating globally optimal parameters, within a given time frame, for on-line learning in multilayer neural networks. We demonstrate the capability of this method by computing optimal learning rates in typical learning scenarios. A similar treatment allows one to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule as well as to compare different training methods.
Resumo:
Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
In recent years, UK industry has seen an explosive growth in the number of `Computer Aided Production Management' (CAPM) system installations. Of the many CAPM systems, materials requirement planning/manufacturing resource planning (MRP/MRPII) is the most widely implemented. Despite the huge investments in MRP systems, over 80 percent are said to have failed within 3 to 5 years of installation. Many people now assume that Just-In-Time (JIT) is the best manufacturing technique. However, those who have implemented JIT have found that it also has many problems. The author argues that the success of a manufacturing company will not be due to a system which complies with a single technique; but due to the integration of many techniques and the ability to make them complement each other in a specific manufacturing environment. This dissertation examines the potential for integrating MRP with JIT and Two-Bin systems to reduce operational costs involved in managing bought-out inventory. Within this framework it shows that controlling MRP is essential to facilitate the integrating process. The behaviour of MRP systems is dependent on the complex interactions between the numerous control parameters used. Methodologies/models are developed to set these parameters. The models are based on the Pareto principle. The idea is to use business targets to set a coherent set of parameters, which not only enables those business targets to be realised, but also facilitates JIT implementation. It illustrates this approach in the context of an actual manufacturing plant - IBM Havant. (IBM Havant is a high volume electronics assembly plant with the majority of the materials bought-out). The parameter setting models are applicable to control bought-out items in a wide range of industries and are not dependent on specific MRP software. The models have produced successful results in several companies and are now being developed as commercial products.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A possibility of a strong change of an electromagnetic signal by a short sequence of time cycles of pulses that modulate the medium parameters is shown. The backward wave is demonstrated to be an inevitable result of the medium time change. Dependence of the relation between backward and forward waves on the parameters of the medium modulation is investigated. The finite statistical complexity of the electromagnetic signal transformed by a finite sequence of modulating cycles is calculated. Increase of the complexity with the number of cycles is shown.