2 resultados para Public address systems
em Aston University Research Archive
Resumo:
The aim of this thesis is to examine the specific contextual factors affecting the applicability and development of the planning, programming, budgeting system (P.P.B.S.) as a systems approach to public sector budgeting. The concept of P.P.B.S. as a systems approach to public sector budgeting will first be developed and the preliminary hypothesis that general contextual factors may be classified under political, structural and cognitive headings will be put forward. This preliminary hypothesis will be developed and refined using American and early British experience. The refined hypothesis will then be tested in detail in the case of the English health and personal social services (H.P.S.S.), The reasons for this focus are that it is the most recent, the sole remaining, and the most significant example in British central government outside of defence, and is fairly representative of non-defence government programme areas. The method of data collection relies on the examination of unpublished and difficult to obtain central government, health and local authority documents, and interviews with senior civil servants and public officials. The conclusion will be that the political constraints on, or factors affecting P.P.B.S., vary with product characteristics and cultural imperatives on pluralistic decision-making; that structural constraints vary with the degree of coincidence of programme and organisation structure and with the degree of controllability of the organisation; and finally, that cognitive constraints vary according to product characteristics, organisational responsibilities, and analytical effort.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In order to support the rigorous specification of adaptive systems requirements, this paper introduces RELAX, a new requirements language for self-adaptive systems that explicitly addresses uncertainty inherent in adaptive systems. We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a rigorous treatment of requirements that include uncertainty. RELAX enables developers to identify uncertainty in the requirements, thereby facilitating the design of systems that are, by definition, more flexible and amenable to adaptation in a systematic fashion. We illustrate the use of RELAX on smart home applications, including an adaptive assisted living system.