15 resultados para Prototype Design
em Aston University Research Archive
Resumo:
A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.
Resumo:
Poster. Introduction: One in five menand one half of women over the age of 50 will experience a bone fracture, whichis frequently accompanied by poor bone health. This combination of poor bonehealth and fracture is a two edge sword, because not only does poor bone healthmake fractures more likely, it also reduces the efficacy of standard fracturetreatments. Currently available surgical fixation devices that were originallydeveloped for healthy bone, such as pins, plates and bone screws, are often noteffective for patients with osteoporosis, resulting in unsatisfactory outcomesor longer and more painful recovery times. One major issue is the design ofbone screws, which can loosen or pull-out from osteoporotic bone. Osteopenicscrews with larger outer thread diameters have been developed to try andaddress this problem. The larger diameter screws have been shown to be 60–70 %stronger in lab tests of individual screws but the larger diameter screwscannot be used with the standard spacing in fixation plates without the risk ofcausing fractures between the screws. In addition, many fractures occur nearjoints where there is not room to increase the spacing between screws.Therefore, new bone screws are needed for treatment of fractures in osteoporoticbone. Materials and Methods: Afterdeveloping a novel bone screw design, we fabricated screws using rapidprototyping methods. Screws were inserted into 10 pcf density sawbones polyurethanefoam as a model for osteoporotic bone. Pull-out tests were conducted using theprototype bone screw design and the standard screw design for comparison inaccordance with ASTM 543-13. Results and Discussion: Ourprototype screws have the same outer diameter as standard bone screws, but haveoptimised threads. For pull-out tests in 10 psf density sawbones poly-urethanefoam, the prototype screw design was 60 % stronger than the standard bone screwdesign (p<0.01). Conclusion: Our novel bonescrew design provides significant improvement in standard tests with syntheticbone material. Additional tests are needed to determine if the bone screwswould be suitable for human trials.
Resumo:
This system is concerned with the design and implementation of a community health information system which fulfils some of the local needs of fourteen nursing and para-medical professions in a district health authority, whilst satisfying the statutory requirements of the NHS Korner steering group for those professions. A national survey of community health computer applications, documented in the form of an applications register, shows the need for such a system. A series of general requirements for an informations systems design methodology are identified, together with specific requirements for this problem situation. A number of existing methodologies are reviewed, but none of these were appropriate for this application. Some existing approaches, tools and techniques are used to define a more suitable methodology. It is unreasonable to rely on one single general methodology for all types of application development. There is a need for pragmatism, adaptation and flexibility. In this research, participation in the development stages by those who will eventually use the system was thought desirable. This was achieved by forming a representative design group. Results would seem to show a highly favourable response from users to this participation which contributed to the overall success of the system implemented. A prototype was developed for the chiropody and school nursing staff groups of Darlington health authority, and evaluations show that a significant number of the problems and objectives of those groups have been successfully addressed; the value of community health information has been increased; and information has been successfully fed back to staff and better utilised.
Resumo:
The development of increasingly powerful computers, which has enabled the use of windowing software, has also opened the way for the computer study, via simulation, of very complex physical systems. In this study, the main issues related to the implementation of interactive simulations of complex systems are identified and discussed. Most existing simulators are closed in the sense that there is no access to the source code and, even if it were available, adaptation to interaction with other systems would require extensive code re-writing. This work aims to increase the flexibility of such software by developing a set of object-oriented simulation classes, which can be extended, by subclassing, at any level, i.e., at the problem domain, presentation or interaction levels. A strategy, which involves the use of an object-oriented framework, concurrent execution of several simulation modules, use of a networked windowing system and the re-use of existing software written in procedural languages, is proposed. A prototype tool which combines these techniques has been implemented and is presented. It allows the on-line definition of the configuration of the physical system and generates the appropriate graphical user interface. Simulation routines have been developed for the chemical recovery cycle of a paper pulp mill. The application, by creation of new classes, of the prototype to the interactive simulation of this physical system is described. Besides providing visual feedback, the resulting graphical user interface greatly simplifies the interaction with this set of simulation modules. This study shows that considerable benefits can be obtained by application of computer science concepts to the engineering domain, by helping domain experts to tailor interactive tools to suit their needs.
Resumo:
This research investigates the general user interface problems in using networked services. Some of the problems are: users have to recall machine names and procedures to. invoke networked services; interactions with some of the services are by means of menu-based interfaces which are quite cumbersome to use; inconsistencies exist between the interfaces for different services because they were developed independently. These problems have to be removed so that users can use the services effectively. A prototype system has been developed to help users interact with networked services. This consists of software which gives the user an easy and consistent interface with the various services. The prototype is based on a graphical user interface and it includes the following appJications: Bath Information & Data Services; electronic mail; file editor. The prototype incorporates an online help facility to assist users using the system. The prototype can be divided into two parts: the user interface part that manages interactlon with the user; the communicatIon part that enables the communication with networked services to take place. The implementation is carried out using an object-oriented approach where both the user interface part and communication part are objects. The essential characteristics of object-orientation, - abstraction, encapsulation, inheritance and polymorphism - can all contribute to the better design and implementation of the prototype. The Smalltalk Model-View-Controller (MVC) methodology has been the framework for the construction of the prototype user interface. The purpose of the development was to study the effectiveness of users interaction to networked services. Having completed the prototype, tests users were requested to use the system to evaluate its effectiveness. The evaluation of the prototype is based on observation, i.e. observing the way users use the system and the opinion rating given by the users. Recommendations to improve further the prototype are given based on the results of the evaluation. based on the results of the evah:1ation. . .'. " "', ':::' ,n,<~;'.'
Resumo:
There is a great deal of literature about the initial stages of innovative design. This is the process whereby a completely new product is conceived, invented and developed. In industry, however, the continuing success of a company is more often achieved by improving or developing existing designs to maintain their marketability. Unfortunately, this process of design by evolution is less well documented. This thesis reports the way in which this process was improved for the sponsoring company. The improvements were achieved by implementing a new form of computer aided design (C.A.D.) system. The advent of this system enabled the company to both shorten the design and development time and also to review the principles underlying the existing design procedures. C.A.D. was a new venture for the company and care had to be taken to ensure that the new procedures were compatible with the existing design office environment. In particular, they had to be acceptable to the design office staff. The C.A.D. system produced guides the designer from the draft specification to the first prototype layout. The computer presents the consequences of the designer's decisions clearly and fully, often by producing charts and sketches. The C.A.D. system and the necessary peripheral facilities were implemented, monitored and maintained. The system structure was left sufficiently flexible for maintenance to be undertaken quickly and effectively. The problems encountered during implementation are well documented in this thesis.
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
OBJECTIVES: The objective of this research was to design a clinical decision support system (CDSS) that supports heterogeneous clinical decision problems and runs on multiple computing platforms. Meeting this objective required a novel design to create an extendable and easy to maintain clinical CDSS for point of care support. The proposed solution was evaluated in a proof of concept implementation. METHODS: Based on our earlier research with the design of a mobile CDSS for emergency triage we used ontology-driven design to represent essential components of a CDSS. Models of clinical decision problems were derived from the ontology and they were processed into executable applications during runtime. This allowed scaling applications' functionality to the capabilities of computing platforms. A prototype of the system was implemented using the extended client-server architecture and Web services to distribute the functions of the system and to make it operational in limited connectivity conditions. RESULTS: The proposed design provided a common framework that facilitated development of diversified clinical applications running seamlessly on a variety of computing platforms. It was prototyped for two clinical decision problems and settings (triage of acute pain in the emergency department and postoperative management of radical prostatectomy on the hospital ward) and implemented on two computing platforms-desktop and handheld computers. CONCLUSIONS: The requirement of the CDSS heterogeneity was satisfied with ontology-driven design. Processing of application models described with the help of ontological models allowed having a complex system running on multiple computing platforms with different capabilities. Finally, separation of models and runtime components contributed to improved extensibility and maintainability of the system.
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.
Resumo:
This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.
Resumo:
The verification and validation of engineering designs are of primary importance as they directly influence production performance and ultimately define product functionality and customer perception. Research in aspects of verification and validation is widely spread ranging from tools employed during the digital design phase, to methods deployed for prototype verification and validation. This paper reviews the standard definitions of verification and validation in the context of engineering design and progresses to provide a coherent analysis and classification of these activities from preliminary design, to design in the digital domain and the physical verification and validation of products and processes. The scope of the paper includes aspects of system design and demonstrates how complex products are validated in the context of their lifecycle. Industrial requirements are highlighted and research trends and priorities identified. © 2010 CIRP.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.
Resumo:
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.