3 resultados para Protein loading

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Initial work focused on the preparation, optimisation and characterisation of poly (D,L-lactide) (PLA) microspheres with the aim of optimising their formulation based on minimizing the particle size into the range suitable for pulmonary delivery to alveoli. In order to produce dry powders and to enhance their long-term physico-chemical stability, microspheres were prepared as a dry powder via freeze-drying. Optimisation studies showed that using appropriate concentrations of polymer 3% (w/v) in organic phase and emulsifier 10% (w/v) in external aqueous phase, the double solvent evaporation method produced high protein loading microspheres (72 ± 0.5%) with an appropriate particle size for pulmonary drug delivery. Combined use of trehalose and leucine as cyroprotectants (6% and 1% respectively, w/v) produced freeze-dried powders with the best aerosolisation profile among those tested. Although the freeze-dried PLA microsphere powders were not particularly respirable in dry powder inhalation, nebulisation of the rehydrated powders using an ultrasonic nebuliser resulted in improved aerosilisation performance compared to the air-jet nebuliser. When tested in vitro using a macrophage cell line, the PLA microspheres system exhibited a low cytotoxicity and the microspheres induced phagocytic activity in macrophages. However, interestingly, the addition of an immunomodulator to the microsphere formulations (4%, w/w of polymer) reduced this phagocytic activity and macrophage activation compared to microspheres formulated using PLA alone. This suggested that the addition of trehalose dibehenate may not enhance the ability of these microspheres to be used as vaccine delivery systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The facility to controlled triggered release from a “cage” system remains a key requirement for novel drug delivery. Earlier studies have shown that Bis-Azo PC based photosensitive liposomes are beneficial for drug delivery. Thus, the aim of this project was to develop photosensitive liposomes that can be used for the controlled release of drugs through UV irradiation, particularly therapeutic agents for the treatment of psoriasis. Bis-Azo PC was successfully synthesized and incorporated into a range of liposomal formulations, and these liposomes were applied for the controlled release of BSA-FITC. Bis-Azo PC sensitized liposomes were prepared via interdigitation fusion method. IFV containing optimum cholesterol amount in terms of protein loading, stability and photo-trigger release of protein was investigated. Further studies investigated the stability and triggered release of the HMT from IFV. Finally, permeation behavior of HMT and HMT-entrapped IFV through rat skin was examined using Franz cell. Results from protein study indicated that the stable entrapment of the model protein was feasible as shown through fluorescence spectroscopy and maximum of 84% protein release from IFV after 12 min of UV irradiation. Moreover, stability studies indicated that IFV were more stable at 4 0C as compared to 25 0C. Hence, DPPC:Chol:Bis-Azo PC (16:2:1) based IFV was chosen for the controlled release of HMT and these studies exhibited that photo-trigger release and stability data of HMT-entrapped IFV are in line with the protein results. Franz cell work inferred that HMT-entrapped IFV attributed to slower skin permeation as compared to HMT. CLSM also demonstrated that HMT can be used as a fluorescent label for the in vitro skin study. Overall, the work highlighted in this thesis has given useful insight into the potentials of Bis-Azo PC based IFV as a promising carrier for the treatment of psoriasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.