7 resultados para Protein content

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: To investigate factors responsible for muscle loss in cachexia changes in nucleic acid and protein levels have been determined and compared with those induced by a tumour-produced cachectic factor, proteolysis-inducing factor (PIF). Materials and Methods: Mice were transplanted with the MAC16 tumour, while non-tumour bearing mice received PIF (1.5 mg/kg; i.v.) over a 24 h period. Results: There was an exponential decrease in RNA and protein in gastrocnemius muscle with weight loss without an effect on the DNA content. Levels of myosin followed the decrease in total protein, while actin levels remained constant. There was also a significant loss of protein from soleus muscle and spleen, but not from heart, liver and kidney. PIF also produced a significant loss of RNA and protein in spleen and reduced the protein content of soleus muscle. Conclusion: This suggests that PIF may be responsible for changes in protein and RNA content of tissues with the development of cachexia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of Pseudomonas aeruginosa 6750 as a biofilm was investigated using a novel system based on that of Gilbert et al (1989). The aim was to test the effect of controlled growth of the organism on antibiotic susceptibility and examine the survival of the organism as a biofilm. During the investigations it became clear that, because of the increasing growth of P.aeruginosa and production of exopolysaccharide, a growth rate controlled monolayer could not be achieved and so the method was not used further. The data, however, showed that there was an increase in the smooth colony type of the organism during growth. Investigations were focused on the survival of P.aeruginosa in batch and chemostat studies. Survival or percentage culturability, as measured by total and colony count ratio, was found to decrease both in extended batch culture and for chemostat cells with decreasing growth rate. Extended batch culture, however, did not exhibit further increases in resistance to ciprofloxacin and polymyxin B. Survival was also measured using other parameters namely the direct viable count, vital staining, effect of temperature downshift and measurement of lag. In batch culture, the most notable change was a decrease in cell size along the growth curve. This was accompanied by an increase in the cellular protein content. Protein per volume was calculated from the data which showed a marked increase in batch culture, which was not demonstrated for chemostat cells with decreasing growth rate. Outer membrane protein profiles were obtained for batch and chemostat cells. An LPS profile of batch culture cells was also demonstrated. In general, there was little difference in the outer membrane protein profiles of cells from early and late stationary phases.The result of the LPS profile showed that there appeared to be an increase in the B-band of the region of the LPS in the older stationary phase cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lyophilisation or freeze drying is the preferred dehydrating method for pharmaceuticals liable to thermal degradation. Most biologics are unstable in aqueous solution and may use freeze drying to prolong their shelf life. Lyophilisation is however expensive and has seen lots of work aimed at reducing cost. This thesis is motivated by the potential cost savings foreseen with the adoption of a cost efficient bulk drying approach for large and small molecules. Initial studies identified ideal formulations that adapted well to bulk drying and further powder handling requirements downstream in production. Low cost techniques were used to disrupt large dried cakes into powder while the effects of carrier agent concentration were investigated for powder flowability using standard pharmacopoeia methods. This revealed superiority of crystalline mannitol over amorphous sucrose matrices and established that the cohesive and very poor flow nature of freeze dried powders were potential barriers to success. Studies from powder characterisation showed increased powder densification was mainly responsible for significant improvements in flow behaviour and an initial bulking agent concentration of 10-15 %w/v was recommended. Further optimisation studies evaluated the effects of freezing rates and thermal treatment on powder flow behaviour. Slow cooling (0.2 °C/min) with a -25°C annealing hold (2hrs) provided adequate mechanical strength and densification at 0.5-1 M mannitol concentrations. Stable bulk powders require powder transfer into either final vials or intermediate storage closures. The targeted dosing of powder formulations using volumetric and gravimetric powder dispensing systems where evaluated using Immunoglobulin G (IgG), Lactate Dehydrogenase (LDH) and Beta Galactosidase models. Final protein content uniformity in dosed vials was assessed using activity and protein recovery assays to draw conclusions from deviations and pharmacopeia acceptance values. A correlation between very poor flowability (p<0.05), solute concentration, dosing time and accuracy was revealed. LDH and IgG lyophilised in 0.5 M and 1 M mannitol passed Pharmacopeia acceptance values criteria with 0.1-4 while formulations with micro collapse showed the best dose accuracy (0.32-0.4% deviation). Bulk mannitol content above 0.5 M provided no additional benefits to dosing accuracy or content uniformity of dosed units. This study identified considerations which included the type of protein, annealing, cake disruption process, physical form of the phases present, humidity control and recommended gravimetric transfer as optimal for dispensing powder. Dosing lyophilised powders from bulk was demonstrated as practical, time efficient, economical and met regulatory requirements in cases. Finally the use of a new non-destructive technique, X-ray microcomputer tomography (MCT), was explored for cake and particle characterisation. Studies demonstrated good correlation with traditional gas porosimetry (R2 = 0.93) and morphology studies using microscopy. Flow characterisation from sample sizes of less than 1 mL was demonstrated using three dimensional X-ray quantitative image analyses. A platinum-mannitol dispersion model used revealed a relationship between freezing rate, ice nucleation sites and variations in homogeneity within the top to bottom segments of a formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The brewing industry produces large amounts of by-products and wastes like brewers' spent grain (BSG). In Germany, each year approximately 2.1 million tonnes of BSG are generated. During the last years conventional routes of BSG utilization face a remarkable change, such as the decline in the demand as animal feed. Due to its high content of organic matter energetic utilization may create an additional economic value for breweries. Furthermore, in the recent past breweries tend to shift their energy supply towards more sustainable concepts. Although, a decent number of research projects were carried out already, still no mature strategy is available. However, one possible solution can be the mechanical pretreatment of BSG. This step allows optimized energy utilization by the fractionation of BSG. Due to the transfer of digestible components, such as protein, to the liquid phase, the solid phase will largely consist of combustible components. That represents an opportunity to produce a solid biofuel with lower fuelnitrogen content compared to only thermal dried BSG. Therefore, two main purposes for the mechanical pre-treatment were determined, (1) to reduce the moisture content to at least 60 % (w/w) and (2) to diminish the protein content of the solid phase by 30 %. Moreover, the combustion trials should demonstrate whether stable processes and flue gas emissions within the legal limits in Germany are feasible. The results of the mechanical pre-treatment trials showed that a decrease of the moisture and protein content has been achieved. With regard to the combustion trials inconsistent outcomes were found. On the one hand a stable combustion was realized. On the other hand the legal emission levels of NOx (500 mgm -3) and dust (50 mgm-3) could not be kept during all trials. The further research steps will focus on the optimization of the air/fuel ratio by reducing the primary and secondary air conditions. Copyright © 2014,AIDIC Servizi S.r.l.