14 resultados para Propyl Gallate
em Aston University Research Archive
Resumo:
A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.
Resumo:
The title compound, C11H11NO3, has two mol-ecules in the asymmetric unit, which differ in the orientation of their side-chain OH groups, allowing them to form inter-molecular O - H⋯O hydrogen bonds to different acceptors. In one case, the acceptor is the OH group of the other mol-ecule, and in the other case it is an imide O=C group. This is the first example in the N-substituted phthalimide series in which independent mol-ecules have different types of acceptor. Mol-ecular-orbital calculations place the greatest negative charge on the OH group. © 2008 International Union of Crystallography.
Resumo:
The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.
Resumo:
Background: Loss of muscle protein is a common feature of wasting diseases where currently treatment is limited. This study investigates the potential of epigallocatechin-3-gallate (EGCg), the most abundant catechin in green tea, to reverse the increased protein degradation and rescue the decreased protein synthesis which leads to muscle atrophy. Methods: Studies were conducted in vitro using murine C2C12myotubes. Increased protein degradation and reduced rates of protein synthesis were induced by serum starvation and tumour necrosis factor-α (TNF-α). Results: EGCg effectively attenuated the depression of protein synthesis and increase in protein degradation in murine myotubes at concentrations as low as 10 μM. Serum starvation increased expression of the proteasome 20S and 19S subunits, as well as the proteasome ‘chymotrypsin-like’ enzyme activity, and these were all attenuated down to basal values in the presence of EGCg. Serum starvation did not increase expression of the ubiquitin ligases MuRF1 and MAFbx, but EGCg reduced their expression below basal levels, possibly due to an increased expression of phospho Akt (pAkt) and phospho forkhead box O3a (pFoxO3a). Attenuation of protein degradation by EGCg was increased in the presence of ZnSO4, suggesting an EGCg-Zn2+complex may be the active species. Conclusion: The ability of EGCg to attenuate depressed protein synthesis and increase protein degradation in the myotubule model system suggests that it may be effective in preserving skeletal muscle mass in catabolic conditions.
Resumo:
One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.
Resumo:
Zwitterionic copolymers were synthesised from N,N-dimethyl-N-(2- acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) and 2-hydroxyethyl methacrylate (HEMA) produce a series of polyzwitterion hydrogels. For the synthesis of the charge-balanced copolymer hydrogels, two cationic monomers were selected: 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA), and an anionic monomer; 2-acrylamido-2- methylpropane sulphonic acid (AMPS). Two series of charge-balanced copolymers were synthesized from stoichiometrically equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a termonomer. All synthesized copolymers produced clear and cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar equilibrium water contents together with similar mechanical and surface energy properties. The swelling of the zwitterionic and the charge-balanced copolymers shows some features of antipolyelectrolyte behavior.
Resumo:
The development of cationic liposomes for gene delivery has been ongoing for almost 20 years; however, despite extensive efforts to develop a successful therapeutic agent, there has been limited progress towards generating an effective pharmaceutical product. Since the introduction of N-(1-[2,3-dioley-loxy]propyl)-N,N,N-trimethylammonium chloride, an immense number of different cationic lipids have been synthesised and used to formulate cationic liposome - DNA complexes. Structural modification of the cationic lipids and the addition of components within the delivery system that can facilitate the fusion, cellular uptake and targeting of liposome - DNA complexes have all been used in a bid to enhance their transfection efficiency. Unfortunately, the overall impact of these improvements is still nominal, with the vast majority of clinical trials (∼ 85%) continuing to rely on more potent viral delivery of DNA despite their associated toxicity issues. Key characteristics of the most effective cationic liposomes for the delivery of plasmid DNA (from a consensus of the literature) is identified here and the problems of converting these attributes into an effective pharmaceutical product are outlined. © 2006 Informa UK Ltd.
Resumo:
Atom transfer radical polymerisation (ATRP) of styrene in xylene solution initiated with 1-phenylethyl bromide and mediated by CuBr/N-propyl-2- pyridinemethanimine catalyst complex was studied. The polymerisation was ill-controlled, yielding polymers with broad molecular weight distributions and values of number average molecular weight considerably higher than the theoretical values calculated from 100% initiator efficiency. The degree of control afforded over the polymerisation was enhanced by use of a more soluble catalyst complex, CuBr/N-octyl-2-pyridinemethanimine. Furthermore, the use of a more polar solvent, diglyme, generated a homogeneous catalyst complex that facilitated the production of polymers having narrow molecular weight distributions (1.10 < PDi < 1.20). The kinetics of the atom transfer radical polymerisation of methyl methacrylate at 90°C in diglyme solution initiated with ethyl-2-bromoisobutyrate and mediated by CuBr/N-octyl-2-pyridinemethanimine was studied and the orders of the reaction were established. The effect on the rate of polymerisation of the ratio of CuBr:N-octyl-2-pyridinemethanimine was also determined. The temperature dependencies of the rate of polymerisation of methyl methacrylate in diglyme solution and xylene solution were studied, and were found to be non-linear and dependent upon the polarity of the solvent. The use of highly polar aprotic solvents, such as N,N-dimethylformamide and dimethylsulphoxide, was found to be detrimental to the degree of control afforded over the polymerisation of methyl methacrylate. This was circumvented by use of a 5-fold excess, over that conventionally used, of catalyst complex. The atom transfer radical polymerisation of (4-nitrophenyl)-[3-[N-[2- (methacryloyloxy)ethyl]carbazolyl]]diazene in dimethyl sulphoxide solution was studied. Although homopolymerisation yielded only oligomers, copolymerisation of this monomer with methyl methacrylate was found to be readily achievable. Keywords: ATRP, Styrene; Methyl methacrylate; Polar solvents; Fully-functional photorefractive polymer. 2
Resumo:
Psoriasis is characterised by epidermal proliferation and inflammation resulting in the appearance of elevated erythematous plaques. The ratio of c~AMP/c~GMP is decreased in psoriatic skin and when the epidermal cell surface receptors are stimulated by β-adrenergic agonists, intracellular ATP is transformed into c-AMP, thus restoring the c~AMP/c~GMP levels. This thesis describes a series of β-adrenoceptor agonists for topical delivery based upon the soft-drug approach. Soft drugs are defined as biologically active, therapeutically useful chemical compounds (drugs) characterised by a predictable and controllable In vivo destruction (metabolism) to non-toxic moieties. after they achieve their therapeutic role, The N-substituent can accommodate a broad range of structures and here the alkoxycarbonylethyl group has been used to provide metabolic susceptability. The increased polarity of the dihydroxy acid, expected after metabolic conversion of the soft~drug, ethyl N-[2'-(3',4'-dihydroxyphenyl)-2'-hydroxyethyl]-3- aminopropionate, should eliminate agonist activity. Further. to prevent oxidation and enhance topical delivery, the catechol hydroxyl groups have been esterified to produce a pro-soft-drug which generates the soft-drug in enzymic systems. The chemical hydrolysis of the pro-soft-drug proceeded via the formation of the dlpivaloyloxy acid and it failed to generate the active dihydroxy ester soft-drug. In contrast, in the presence of porcine liver carboxyesterase, the hydrolysis of the pro-soft drug proceeded via the formation of the required active soft-drug. This compound, thus, has the appropnate kinetic features to enable it to be evaluated further as a drug for the treatment of psoriasis. The pH rate-profile for the hydrolysis of soft-drug indicated a maximum stability at pH ∼ 4.0. The individual rate constants for the degradation and the pKa were analysed by nonlinear regression. The pKa of 7.40 is in excellent agreement with that determined by direct titration (7.43) and indicates that satisfactory convergence was achieved. The soft-drug was poorly transported across a silicone membrane; it was also air-sensitive due to oxidation of the catechol group. The transport of the pro-soft-drug was more efficient and, over the donor pH range 3-8, increased with pH. At lower values, the largely protonated species was not transported. However, above pH 7. chemical degradation was rapid so that a donor pH of 5-6 was optimum. The β-adrenergic agonist activity of these compounds was tested in vitro by measuring chronotropic and inotropic responses in the guinea pig atria and relaxation of guinea pig trachea precontracted with acetylcholine (10-3 M). The soft~drug was a full agonist on the tracheal preparation but was less potent than isoprenaline. Responses of the soft~drug were competitively antagonised by propranolol (10-6 M). The soft~drug produced an increase in force and rate of the isolated atrial preparatIon. The propyl analogue was equally potent with ED50 of 6.52 x 10-7 M. In contrast, at equivalent doses, the dihydroxy acid showed no activity; only a marginal effect was observed on the tracheal preparation. For the pro~soft-drug, responses were of slow onset, in both preparations, with a slowly developing relaxatlon of the tracheal preparatlon at high concentrations (10-5 M). This is consistent with in vitro results where the dipivaloyl groups are hydrolysed more readily than the ethyl ester to gIve the active soft-drug. These results confirm the validity tif the pro-soft-drug approach to the deUvery of β-adrenoceptor agonists.
Resumo:
Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.
Resumo:
Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.
Resumo:
Zwitterionic compounds, or zwitterions, are electrically neutral compounds having an equal number of formal unit charges of opposite sign. In common polyzwitterions the zwitterionic groups are usually located in pendent groups rather than the backbone of the macromolecule. Polyzwitterions contain both the anion and cation in the same monomeric unit, unlike polyampholytes which can contain the anion and cation in different monomeric units. The use of cationic and anionic monomers (or monomers capable of becoming charged) in stoichiometric equivalent proportions produces charge-balanced polyampholyte copolymers. Hydrogel materials produced from zwitterionic monomers have been proposed for use and are used in many biomaterial applications but synthetic charge-balanced polyampholyte are less common. Certain properties of hydrogels which are important for their successful use as biomaterials, these include the equilibrium water content, mechanical, surface energy, oxygen permeability, swelling and the coefficient of friction. The zwitterionic monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) was synthesized with 2-hydroxyethly acrylate (HEMA) as the comonomer to produce a series of polyzwitterion hydrogels. To produce charged-balanced copolymer hydrogels two “cationic” monomers were selected; 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA) and an anionic monomer; 2-acrylamido 2,2 methylpropane sulphonic acid (AMPS). Two series’ of charge-balanced copolymers were synthesized from stoichiometric equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a terpolymer. The zwitterionic copolymer and both charge-balanced copolymers produced clear, cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar EWC’s along with similar mechanical and surface energy properties. The swelling of the zwitterionic copolymer displayed antipolyelectrolyte behavior whereas the charge-balanced copolymers displayed behaviour somewhere between this and a typical polyelectrolyte. This work describes some aspects of the polymerisation and properties of SPDA copolymers and charge-balanced (polyampholyte) copolymers relevant to their potential as biomedical / bioresponsive materials. The biomimetic nature of SPDA together with its compatibility with other monomers makes it a useful and complimentary addition to the building blocks of biomaterials.
Resumo:
We have evaluated the cytotoxicity of a series of novel anti-tubercular 2-pyridyl carboxamidrazones through incubation with human mononuclear leucocytes (MNL), with and without a rat microsomal metabolising system. Isoniazid (INH), the closest structurally related agent, was used as a positive control. Incubation of the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene with MNL showed no significant toxicity in comparison with either INH or DMSO vehicle control. However, the 4-N,N-dimethylamino-1-naphthylidene derivative exerted more than sevenfold greater toxicity compared with INH, while the 4-N,N-dimethylamino-1-naphthylidene, 2-benzyloxy-3-methoxy-benzylidene, 2-t-butylthio-benzylidene and 4-i-propyl-benzylidene derivatives showed toxicity which ranged from five to fourfold that of INH. In the presence of either rat microsomes with or without NADPH, the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene derivatives showed no metabolically-mediated cytotoxicity. The latter two derivatives showed a combination of low toxicity and considerable efficacy against Mycobacteria tuberculosis in vitro and show promise for future development. © 2001 Elsevier Science B.V.
Resumo:
Cysteine is a thiol containing amino acid that readily undergoes oxidation by reactive oxygen species (ROS) to form sulphenic (R-SOH) sulphinic (RSO2H) and sulphonic (RSO3H) acids. Thiol modifications of cysteine have been implicated as modulators of cellular processes and represent significant biological modifications that occur during oxidative stress and cell signalling. However, the different oxidation states are difficult to monitor in a physiological setting due to the limited availability of experimental tools. Therefore it is of interest to synthesise and use a chemical probe that selectively recognises the reversible oxidation state of cysteine sulphenic acid to understand more about oxidative signalling. The aim of this thesis was to investigate a synthetic approach for novel fluorescent probe synthesis, for the specific detection of cysteine sulphenic acids by fluorescence spectroscopy and confocal microscopy. N-[2-(Anthracen-2-ylamino)-2-oxoethyl]-3,5-dioxocyclohexanecarboxamide was synthesised in a multistep synthesis and characterised by nuclear magnetic resonance spectroscopy. The optimisation of conditions needed for sulphenic acid formation in a purified protein using human serum albumin (HSA) and the commercially available biotin tagged probe 3-(2,4-dioxocyclohexyl)propyl-5-((3aR,6S,6aS)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentanoate (DCP-Bio1) were identified. This approach was extended to detect sulphenic acids in Jurkat T cells and CD4+ T cells pre- and post-stimulus. Buthionine sulfoximine (BSO) was used to manipulate the endogenous antioxidant glutathione (GSH) in human CD4+ T cells. Then the surface protein thiol levels and sulphenic acid formation was examined. T cells were also activated by the lectin phytohaemagglutinin-L (PHA-L) and formation of sulphenic acid was investigated using SDS-PAGE, western blotting and confocal microscopy. Resting Jurkat cells have two prominent protein bands that have sulphenic acid modifications whereas resting CD4+ T cells have an additional band present. When cells were treated with BSO the number of bands increased whereas activation reduced the number of proteins that were modified. The identities of the protein bands containing sulphenic acids were explored by mass spectrometry. Cysteine oxidation was observed in redox, metabolic and cytoskeletal proteins. In summary, a novel fluorescent probe for detection of cysteine sulphenic acids has been synthesised alongside a model system that introduces cysteine sulphenic acid in primary T cells. This probe has potential application in the subcellular localisation of cysteine oxidation during T cell signalling.