22 resultados para Projection distortion
em Aston University Research Archive
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 19-dimensional data sets.
Resumo:
In data visualization, characterizing local geometric properties of non-linear projection manifolds provides the user with valuable additional information that can influence further steps in the data analysis. We take advantage of the smooth character of GTM projection manifold and analytically calculate its local directional curvatures. Curvature plots are useful for detecting regions where geometry is distorted, for changing the amount of regularization in non-linear projection manifolds, and for choosing regions of interest when constructing detailed lower-level visualization plots.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping (GTM). bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the ancestor visualization plots which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 18-dimensional data sets.
Resumo:
Whereas projection of self-attributes to ingroups is ubiquitous, projection of self-attributes to outgroups (outgroup projection) is an elusive phenomenon. Two experiments examined the moderating effect of perceived intergroup relationship on outgroup projection and explored underlying mechanisms. Perceived cooperation versus competition between ingroup and outgroup was manipulated using fictitious (Experiment 1) or natural groups (Experiment 2). In both experiments, participants judged the outgroup as more similar to the self in the cooperation condition than in the competition condition. This effect was independent of recategorization, perceived intergroup similarity, and ingroup-to-outgroup projection. These studies demonstrate the very existence of outgroup projection and extend previous work on moderators of projection from self to groups.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis (Bishop98a) in several directions: 1. We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. 2. We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. 3. Using tools from differential geometry we derive expressions for local directionalcurvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model.We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set andapply our system to two more complex 12- and 19-dimensional data sets.
Resumo:
A very fast heuristic iterative method of projection on simplicial cones is presented. It consists in solving two linear systems at each step of the iteration. The extensive experiments indicate that the method furnishes the exact solution in more then 99.7 percent of the cases. The average number of steps is 5.67 (we have not found any examples which required more than 13 steps) and the relative number of steps with respect to the dimension decreases dramatically. Roughly speaking, for high enough dimensions the absolute number of steps is independent of the dimension.
Resumo:
The density of senile plaques (SP) and cellular neurofibrillary tabgles (NFT) revealed by the Glees and Gallyas stains; and beta/A4 deposits revealed by immunocytochemical staining, was estimated in the hippocampus and adjacent gyri in Alzheimer's disease (AD). Stepwise multiple regression was used to detemine whether the density of cellular NFT was related to the density of SP or beta/A4 deposits totalled over the projection sites. Cellular NFT density was only weakly correlated with the density of Glees SP and beta/A4 deposits at some of the projection sites. However, beta/A4 deposit density in a tissue was strongly correlated with the density of beta/A4 deposits at the projection sites suggesting that the lesions could spread through the brain. Hence, although there is a strong correlation between the density of beta/A4 deposits in different parts of the hippocampal formation there is little association between SP or beta/A4 and cellular NFT. These results do not provide strong evidence that beta/A4 protein is the cause of the neuritc changes in AD.
Resumo:
In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.
Resumo:
Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
Analysing the molecular polymorphism and interactions of DNA, RNA and proteins is of fundamental importance in biology. Predicting functions of polymorphic molecules is important in order to design more effective medicines. Analysing major histocompatibility complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design and transplantation rejection etc. Most of the existing exploratory approaches cannot analyse these datasets because of the large number of molecules with a high number of descriptors per molecule. This thesis develops novel methods for data projection in order to explore high dimensional biological dataset by visualising them in a low-dimensional space. With increasing dimensionality, some existing data visualisation methods such as generative topographic mapping (GTM) become computationally intractable. We propose variants of these methods, where we use log-transformations at certain steps of expectation maximisation (EM) based parameter learning process, to make them tractable for high-dimensional datasets. We demonstrate these proposed variants both for synthetic and electrostatic potential dataset of MHC class-I. We also propose to extend a latent trait model (LTM), suitable for visualising high dimensional discrete data, to simultaneously estimate feature saliency as an integrated part of the parameter learning process of a visualisation model. This LTM variant not only gives better visualisation by modifying the project map based on feature relevance, but also helps users to assess the significance of each feature. Another problem which is not addressed much in the literature is the visualisation of mixed-type data. We propose to combine GTM and LTM in a principled way where appropriate noise models are used for each type of data in order to visualise mixed-type data in a single plot. We call this model a generalised GTM (GGTM). We also propose to extend GGTM model to estimate feature saliencies while training a visualisation model and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness of these proposed models both for synthetic and real datasets. We evaluate visualisation quality using quality metrics such as distance distortion measure and rank based measures: trustworthiness, continuity, mean relative rank errors with respect to data space and latent space. In cases where the labels are known we also use quality metrics of KL divergence and nearest neighbour classifications error in order to determine the separation between classes. We demonstrate the efficacy of these proposed models both for synthetic and real biological datasets with a main focus on the MHC class-I dataset.
Resumo:
Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects.
Resumo:
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.