18 resultados para Project 2007-001-EP : Interoperable Standards Development
em Aston University Research Archive
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.
Resumo:
Purpose - The main objective of the paper is to develop a risk management framework for software development projects from developers' perspective. Design/methodology/approach - This study uses a combined qualitative and quantitative technique with the active involvement of stakeholders in order to identify, analyze and respond to risks. The entire methodology has been explained using a case study on software development project in a public sector organization in Barbados. Findings - Analytical approach to managing risk in software development ensures effective delivery of projects to clients. Research limitations/implications - The proposed risk management framework has been applied to a single case. Practical implications - Software development projects are characterized by technical complexity, market and financial uncertainties and competent manpower availability. Therefore, successful project accomplishment depends on addressing those issues throughout the project phases. Effective risk management ensures the success of projects. Originality/value - There are several studies on managing risks in software development and information technology (IT) projects. Most of the studies identify and prioritize risks through empirical research in order to suggest mitigating measures. Although they are important to clients for future projects, these studies fail to provide any framework for risk management from software developers' perspective. Although a few studies introduced framework of risk management in software development, most of them are presented from clients' perspectives and very little effort has been made to integrate this with the software development cycle. As software developers absorb considerable amount of risks, an integrated framework for managing risks in software development from developers' perspective is needed. © Emerald Group Publishing Limited.
Resumo:
This thesis provides an interoperable language for quantifying uncertainty using probability theory. A general introduction to interoperability and uncertainty is given, with particular emphasis on the geospatial domain. Existing interoperable standards used within the geospatial sciences are reviewed, including Geography Markup Language (GML), Observations and Measurements (O&M) and the Web Processing Service (WPS) specifications. The importance of uncertainty in geospatial data is identified and probability theory is examined as a mechanism for quantifying these uncertainties. The Uncertainty Markup Language (UncertML) is presented as a solution to the lack of an interoperable standard for quantifying uncertainty. UncertML is capable of describing uncertainty using statistics, probability distributions or a series of realisations. The capabilities of UncertML are demonstrated through a series of XML examples. This thesis then provides a series of example use cases where UncertML is integrated with existing standards in a variety of applications. The Sensor Observation Service - a service for querying and retrieving sensor-observed data - is extended to provide a standardised method for quantifying the inherent uncertainties in sensor observations. The INTAMAP project demonstrates how UncertML can be used to aid uncertainty propagation using a WPS by allowing UncertML as input and output data. The flexibility of UncertML is demonstrated with an extension to the GML geometry schemas to allow positional uncertainty to be quantified. Further applications and developments of UncertML are discussed.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
Over the past few years addressing state fragility in the third world has become an important priority in international development cooperation. However, it seems that the international donor community has so far not been able to develop adequate instruments for dealing with the problems posed by state failure. We see two reasons for this: (i) there is growing recognition within the donor community that the lack of absorptive capacity, or bad economic policies in the partner country can actually make aid counterproductive, even harmful; and (ii) it is very difficult to manage effective development cooperation with weak governments. Channelling aid through NGOs, or giving limited aid in the form of capacity-building is clearly not sufficient to solve the problems fragile states face.
Resumo:
Recently, within the VISDEM project (EPSRC funded EP/C005848/1), a novel variational approximation framework has been developed for inference in partially observed, continuous space-time, diffusion processes. In this technical report all the derivations of the variational framework, from the initial work, are provided in detail to help the reader better understand the framework and its assumptions.
Resumo:
Theory suggests that the dimensions that are incorporated in the new product screening decision will differ according to the stage of the development process. The outcome of the application of different screening dimensions would be quicker, realistic and more reliable screening decisions. This research project builds on existing new product development and screening literature by investigating new product screening in international fast moving consumer goods companies. It further builds on the existing literature by measuring decision-making relating to projects in 'real time', as managers' responses refer to projects they are currently working on. The introduction of branded consumer products allows us to evolve scales used in new product research by further developing variables relating to branding, promotion and retailer power. The project uncovers multiple dimensions of new product screening and evaluation within this branded product sector. These dimensions are found to differ in their ability to discriminate between two groups of accepted and rejected projects at each of four stages of the new product development process. This investigation provides the intelligence with which managers can determine the likelihood of project acceptance and rejection at different stages of the development process. It highlights the need for managers to apply stage-specific dimensions in the new product screening decision and advocates the redefinition of new product screening from both an academic and managerial perspective. The screening decision should not be viewed as a single, early decision in a product development process, but as a series of stage specific decisions regarding future project potential.
Resumo:
The INTAMAP FP6 project has developed an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods and employing open, web-based, data exchange protocols and visualisation tools. This paper will give an overview of the underlying problem, of the project, and discuss which problems it has solved and which open problems seem to be most relevant to deal with next. The interpolation problem that INTAMAP solves is the generic problem of spatial interpolation of environmental variables without user interaction, based on measurements of e.g. PM10, rainfall or gamma dose rate, at arbitrary locations or over a regular grid covering the area of interest. It deals with problems of varying spatial resolution of measurements, the interpolation of averages over larger areas, and with providing information on the interpolation error to the end-user. In addition, monitoring network optimisation is addressed in a non-automatic context.
Resumo:
The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Background - Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC) transformation of protein sequences into uniform vectors of principal amino acid properties. Results - Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion - VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without recourse to sequence alignment. The server can be used on its own or in combination with alignment-based prediction methods.
Resumo:
In order to increase the capacity of the existing Low Voltage grid, one solution is to increase the nominal residential network voltage from 230 V to 300 V, which is easily accommodated within the voltage rating of existing infrastructure such as cabling. A power electronic AC-AC converter would then be used to step the voltage back down to 230 V at an individual property. Such equipment could also be used to provide power quality improvements on both the utility and customer side of the converter depending on its topology. This paper provides an overview of a project which is looking at the development of such a device. The project is being carried out in collaboration with the local UK, Distribution Network Operator (DNO).
Resumo:
UK engineering standards are regulated by the Engineering Council (EC) using a set of generic threshold competence standards which all professionally registered Chartered Engineers in the UK must demonstrate, underpinned by a separate academic qualification at Masters Level. As part of an EC-led national project for the development of work-based learning (WBL) courses leading to Chartered Engineer registration, Aston University has started an MSc Professional Engineering programme, a development of a model originally designed by Kingston University, and build around a set of generic modules which map onto the competence standards. The learning pedagogy of these modules conforms to a widely recognised experiential learning model, with refinements incorporated from a number of other learning models. In particular, the use of workplace mentoring to support the development of critical reflection and to overcome barriers to learning is being incorporated into the learning space. This discussion paper explains the work that was done in collaboration with the EC and a number of Professional Engineering Institutions, to design a course structure and curricular framework that optimises the engineering learning process for engineers already working across a wide range of industries, and to address issues of engineering sustainability. It also explains the thinking behind the work that has been started to provide an international version of the course, built around a set of globalised engineering competences. © 2010 W J Glew, E F Elsworth.
Resumo:
In many Environmental Information Systems the actual observations arise from a discrete monitoring network which might be rather heterogeneous in both location and types of measurements made. In this paper we describe the architecture and infrastructure for a system, developed as part of the EU FP6 funded INTAMAP project, to provide a service oriented solution that allows the construction of an interoperable, automatic, interpolation system. This system will be based on the Open Geospatial Consortium’s Web Feature Service (WFS) standard. The essence of our approach is to extend the GML3.1 observation feature to include information about the sensor using SensorML, and to further extend this to incorporate observation error characteristics. Our extended WFS will accept observations, and will store them in a database. The observations will be passed to our R-based interpolation server, which will use a range of methods, including a novel sparse, sequential kriging method (only briefly described here) to produce an internal representation of the interpolated field resulting from the observations currently uploaded to the system. The extended WFS will then accept queries, such as ‘What is the probability distribution of the desired variable at a given point’, ‘What is the mean value over a given region’, or ‘What is the probability of exceeding a certain threshold at a given location’. To support information-rich transfer of complex and uncertain predictions we are developing schema to represent probabilistic results in a GML3.1 (object-property) style. The system will also offer more easily accessible Web Map Service and Web Coverage Service interfaces to allow users to access the system at the level of complexity they require for their specific application. Such a system will offer a very valuable contribution to the next generation of Environmental Information Systems in the context of real time mapping for monitoring and security, particularly for systems that employ a service oriented architecture.
Resumo:
Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.