4 resultados para Progenitor-cell Identity
em Aston University Research Archive
Resumo:
AIMS: Hydrogen sulfide (H2S) is a vasoactive gasotransmitter that is endogenously produced in the vasculature by the enzyme cystathionine γ-lyase (CSE). However, the importance of CSE activity and local H2S generation for ischaemic vascular remodelling remains completely unknown. In this study, we examine the hypothesis that CSE critically regulates ischaemic vascular remodelling involving H2S-dependent mononuclear cell regulation of arteriogenesis. METHODS AND RESULTS: Arteriogenesis including mature vessel density, collateral formation, blood flow, and SPY angiographic blush rate were determined in wild-type (WT) and CSE knockout (KO) mice at different time points following femoral artery ligation (FAL). The role of endogenous H2S in regulation of IL-16 expression and subsequent recruitment of monocytes, and expression of VEGF and bFGF in ischaemic tissues, were determined along with endothelial progenitor cell (CD34/Flk1) formation and function. FAL of WT mice significantly increased CSE activity, expression and endogenous H2S generation in ischaemic tissues, and monocyte infiltration, which was absent in CSE-deficient mice. Treatment of CSE KO mice with the polysulfide donor diallyl trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine expression. Importantly, exogenous H2S therapy restored nitric oxide (NO) bioavailability in CSE KO mice that was responsible for monocyte recruitment and arteriogenesis. CONCLUSION: Endogenous CSE/H2S regulates ischaemic vascular remodelling mediated during hind limb ischaemia through NO-dependent monocyte recruitment and cytokine induction revealing a previously unknown mechanism of arteriogenesis.
Resumo:
Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.
Resumo:
To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p<0.05 and >1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease.
Resumo:
Background aims: The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. Methods: In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. Results: The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 105 and 1.02 ± 0.005 × 105 cells/mL compared with 0.79 ± 0.05 × 105 and 0.36 ± 0.04 × 105 cells/mL in FBS-containing medium. Conclusions: This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up.