5 resultados para Productive reorganization
em Aston University Research Archive
Resumo:
N-hydroxylation of dapsone leads to the formation of the toxic hydroxylamines responsible for the clinical methaemoglobinaemia associated with dapsone therapy. Dapsone has been associated with decreased lifespan of erythrocytes, with consequences such as anaemia and morbidity in patients treated with dapsone for malaria. Here, we investigated how dapsone and/or its hydroxylamine derivative (DDS-NHOH) induced erythrocyte membrane alterations that could lead to premature cell removal.
Resumo:
Financial institutes are an integral part of any modern economy. In the 1970s and 1980s, Gulf Cooperation Council (GCC) countries made significant progress in financial deepening and in building a modern financial infrastructure. This study aims to evaluate the performance (efficiency) of financial institutes (banking sector) in GCC countries. Since, the selected variables include negative data for some banks and positive for others, and the available evaluation methods are not helpful in this case, so we developed a Semi Oriented Radial Model to perform this evaluation. Furthermore, since the SORM evaluation result provides a limited information for any decision maker (bankers, investors, etc...), we proposed a second stage analysis using classification and regression (C&R) method to get further results combining SORM results with other environmental data (Financial, economical and political) to set rules for the efficient banks, hence, the results will be useful for bankers in order to improve their bank performance and to the investors, maximize their returns. Mainly there are two approaches to evaluate the performance of Decision Making Units (DMUs), under each of them there are different methods with different assumptions. Parametric approach is based on the econometric regression theory and nonparametric approach is based on a mathematical linear programming theory. Under the nonparametric approaches, there are two methods: Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). While there are three methods under the parametric approach: Stochastic Frontier Analysis (SFA); Thick Frontier Analysis (TFA) and Distribution-Free Analysis (DFA). The result shows that DEA and SFA are the most applicable methods in banking sector, but DEA is seem to be most popular between researchers. However DEA as SFA still facing many challenges, one of these challenges is how to deal with negative data, since it requires the assumption that all the input and output values are non-negative, while in many applications negative outputs could appear e.g. losses in contrast with profit. Although there are few developed Models under DEA to deal with negative data but we believe that each of them has it is own limitations, therefore we developed a Semi-Oriented-Radial-Model (SORM) that could handle the negativity issue in DEA. The application result using SORM shows that the overall performance of GCC banking is relatively high (85.6%). Although, the efficiency score is fluctuated over the study period (1998-2007) due to the second Gulf War and to the international financial crisis, but still higher than the efficiency score of their counterpart in other countries. Banks operating in Saudi Arabia seem to be the highest efficient banks followed by UAE, Omani and Bahraini banks, while banks operating in Qatar and Kuwait seem to be the lowest efficient banks; this is because these two countries are the most affected country in the second Gulf War. Also, the result shows that there is no statistical relationship between the operating style (Islamic or Conventional) and bank efficiency. Even though there is no statistical differences due to the operational style, but Islamic bank seem to be more efficient than the Conventional bank, since on average their efficiency score is 86.33% compare to 85.38% for Conventional banks. Furthermore, the Islamic banks seem to be more affected by the political crisis (second Gulf War), whereas Conventional banks seem to be more affected by the financial crisis.
Resumo:
The aim of this paper is to illustrate the measurement of productive efficiency using Nerlovian indicator and metafrontier with data envelopment analysis techniques. Further, we illustrate how profit efficiency of firms operating in different regions can be aggregated into one overarching frontier. Sugarcane production in three regions in Kenya has been used to illustrate these concepts. Results show that the sources of inefficiency in all regions are both technical and allocative, but allocative efficiency contributes more to the overall Nerlovian (in)efficiency indicator. © 2011 Springer-Verlag.
Resumo:
The objective of Total Productive Maintenance (TPM) is to maximise plant and equipment effectiveness, to create a sense of ownership for operators, and promote continuous improvement through small group activities involving production, engineering and maintenance personnel. This paper describes and analyses a case study of TPM implementation at a newspaper printing house in Singapore. However, rather than adopting more conventional implementation methods such as employing consultants or through a project using external training, a unique approach was adopted based on Action Research using a spiral of cycles of planning, acting observing and reflecting. An Action Research team of company personnel was specially formed to undertake the necessary fieldwork. The team subsequently assisted with administering the resulting action plan. The main sources of maintenance and operational data were from interviews with shop floor workers, participative observation and reviews conducted with members of the team. Content analysis using appropriate statistical techniques was used to test the significance of changes in performance between the start and completion of the TPM programme. The paper identifies the characteristics associated with the Action Research method when used to implement TPM and discusses the applicability of the approach in related industries and processes.
Resumo:
Performance analysis has become a vital part of the management practices in the banking industry. There are numerous applications using DEA models to estimate efficiency in banking, and most of them assume that inputs and outputs are known with absolute precision. Here, we propose new Fuzzy-DEA α-level models to assess underlying uncertainty. Further, bootstrap truncated regressions with fixed factors are used to measure the impact of each model on the efficiency scores and to identify the most relevant contextual variables on efficiency. The proposed models have been demonstrated using an application in Mozambican banks to handle the underlying uncertainty. Findings reveal that fuzziness is predominant over randomness in interpreting the results. In addition, fuzziness can be used by decision-makers to identify missing variables to help in interpreting the results. Price of labor, price of capital, and market-share were found to be the significant factors in measuring bank efficiency. Managerial implications are addressed.