20 resultados para Product evaluation
em Aston University Research Archive
Resumo:
Effluent from pulp and paper production at the Kemsley mill of Bowaters U.K. Paper Company Limited passes through two treatment stages before its discharge into the Swale estuary. Suspended material removed during treatment is deposited on wasteground as a thin sludge. The solids it contains are mainly wood components lost during pulp production, whilst it also has a high salt content, derived from chemicals used in pulping processes. After deposition the sludge undergoes an ageing process during which it dries out and its salt content is reduced. This ageing can be reproduced and accelerated by improved drainage under controlled conditions. The paper mill sludge was investigated as a casing medium in the culture of Agaricus bisporus (Lange) Pilat, the cultivated mushroom. It was unsuitable up to one year from deposition due largely to the inhibitory effect of its salt content on fruiting. Material eighteen months or more in age gave yields comparable to standard peat casing. Before use as a casing the material must be shredded to a satisfactory structure, neutralised with chalk, and pasteurised to eliminate organisms harmful to the crop. The prepared medium has a high water holding capacity and a structure resilient to management procedures, important requirements of a good casing. A passive movement of salts from the compost to the casing was shown to occur during culture, capable of enhancing the natural decline in cropping if sufficiently great. The ions chloride, potassium, sodium and sulphate were shown to be responsible, their damaging effects being due to high conductivity created in the casing. Studies of elements available during culture suggested phosphate availability in the compost could limit crop potential, whilst iron released by mycelium of A.bisporus in the casing may be utilised by associated micro-organisms.
Resumo:
A method is proposed to offer privacy in computer communications, using symmetric product block ciphers. The security protocol involved a cipher negotiation stage, in which two communicating parties select privately a cipher from a public cipher space. The cipher negotiation process includes an on-line cipher evaluation stage, in which the cryptographic strength of the proposed cipher is estimated. The cryptographic strength of the ciphers is measured by confusion and diffusion. A method is proposed to describe quantitatively these two properties. For the calculation of confusion and diffusion a number of parameters are defined, such as the confusion and diffusion matrices and the marginal diffusion. These parameters involve computationally intensive calculations that are performed off-line, before any communication takes place. Once they are calculated, they are used to obtain estimation equations, which are used for on-line, fast evaluation of the confusion and diffusion of the negotiated cipher. A technique proposed in this thesis describes how to calculate the parameters and how to use the results for fast estimation of confusion and diffusion for any cipher instance within the defined cipher space.
Resumo:
Safety enforcement practitioners within Europe and marketers, designers or manufacturers of consumer products need to determine compliance with the legal test of "reasonable safety" for consumer goods, to reduce the "risks" of injury to the minimum. To enable freedom of movement of products, a method for safety appraisal is required for use as an "expert" system of hazard analysis by non-experts in safety testing of consumer goods for implementation consistently throughout Europe. Safety testing approaches and the concept of risk assessment and hazard analysis are reviewed in developing a model for appraising consumer product safety which seeks to integrate the human factors contribution of risk assessment, hazard perception, and information processing. The model develops a system of hazard identification, hazard analysis and risk assessment which can be applied to a wide range of consumer products through use of a series of systematic checklists and matrices and applies alternative numerical and graphical methods for calculating a final product safety risk assessment score. It is then applied in its pilot form by selected "volunteer" Trading Standards Departments to a sample of consumer products. A series of questionnaires is used to select participating Trading Standards Departments, to explore the contribution of potential subjective influences, to establish views regarding the usability and reliability of the model and any preferences for the risk assessment scoring system used. The outcome of the two stage hazard analysis and risk assessment process is considered to determine consistency in results of hazard analysis, final decisions regarding the safety of the sample product and to determine any correlation in the decisions made using the model and alternative scoring methods of risk assessment. The research also identifies a number of opportunities for future work, and indicates a number of areas where further work has already begun.
Resumo:
Theory suggests that the dimensions that are incorporated in the new product screening decision will differ according to the stage of the development process. The outcome of the application of different screening dimensions would be quicker, realistic and more reliable screening decisions. This research project builds on existing new product development and screening literature by investigating new product screening in international fast moving consumer goods companies. It further builds on the existing literature by measuring decision-making relating to projects in 'real time', as managers' responses refer to projects they are currently working on. The introduction of branded consumer products allows us to evolve scales used in new product research by further developing variables relating to branding, promotion and retailer power. The project uncovers multiple dimensions of new product screening and evaluation within this branded product sector. These dimensions are found to differ in their ability to discriminate between two groups of accepted and rejected projects at each of four stages of the new product development process. This investigation provides the intelligence with which managers can determine the likelihood of project acceptance and rejection at different stages of the development process. It highlights the need for managers to apply stage-specific dimensions in the new product screening decision and advocates the redefinition of new product screening from both an academic and managerial perspective. The screening decision should not be viewed as a single, early decision in a product development process, but as a series of stage specific decisions regarding future project potential.
Resumo:
Product design and sourcing decisions are among the most difficult and important of all decisions facing multinational manufacturing companies, yet associated decision support and evaluation systems tend to be myopic in nature. Design for manufacture and assembly techniques, for example, generally focuses on manufacturing capability and ignores capacity although both should be considered. Similarly, most modelling and evaluation tools available to examine the performance of various solution and improvement techniques have a narrower scope than desired. A unique collaboration, funded by the US National Science Foundation, between researchers in the USA and the UK currently addresses these problems. This paper describes a technique known as Design For the Existing Environment (DFEE) and an holistic evaluation system based on enterprise simulation that was used to demonstrate the business benefits of DFEE applied in a simple product development and manufacturing case study. A project that will extend these techniques to evaluate global product sourcing strategies is described along with the practical difficulties of building an enterprise simulation on the scale and detail required.
Resumo:
This paper disputes the fact that product design determines 70% of costs and the implications that follow for design evaluation tools. Using the idea of decision chains, it is argued that such tools need to consider more of the downstream business activities and should take into account the current and future state of the business rather than some idealized view of it. To illustrate the argument, a series of experiments using an enterprise simulator are described that show the benefit from the application of a more holistic 'design for' technique. Design For the Existing Environment.
Resumo:
The topic of bioenergy, biofuels and bioproducts remains at the top of the current political and research agenda. Identification of the optimum processing routes for biomass, in terms of efficiency, cost, environment and socio-economics is vital as concern grows over the remaining fossil fuel resources, climate change and energy security. It is known that the only renewable way of producing conventional hydrocarbon fuels and organic chemicals is from biomass, but the problem remains of identifying the best product mix and the most efficient way of processing biomass to products. The aim is to move Europe towards a biobased economy and it is widely accepted that biorefineries are key to this development. A methodology was required for the generation and evaluation of biorefinery process chains for converting biomass into one or more valuable products that properly considers performance, cost, environment, socio-economics and other factors that influence the commercial viability of a process. In this thesis a methodology to achieve this objective is described. The completed methodology includes process chain generation, process modelling and subsequent analysis and comparison of results in order to evaluate alternative process routes. A modular structure was chosen to allow greater flexibility and allowing the user to generate a large number of different biorefinery configurations The significance of the approach is that the methodology is defined and is thus rigorous and consistent and may be readily re-examined if circumstances change. There was the requirement for consistency in structure and use, particularly for multiple analyses. It was important that analyses could be quickly and easily carried out to consider, for example, different scales, configurations and product portfolios and so that previous outcomes could be readily reconsidered. The result of the completed methodology is the identification of the most promising biorefinery chains from those considered as part of the European Biosynergy Project.
Resumo:
Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.
Resumo:
The objective of this study has been to enable a greater understanding of the biomass gasification process through the development and use of process and economic models. A new theoretical equilibrium model of gasification is described using the operating condition called the adiabatic carbon boundary. This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The model can be used as a `target' against which the results of real gasifiers can be compared, but it does not simulate the results of real gasifiers. A second model has been developed which uses a stagewise approach in order to model fluid bed gasification, and its results have indicated that pyrolysis and the reactions of pyrolysis products play an important part in fluid bed gasifiers. Both models have been used in sensitivity analyses: the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had lesser effects. Correlations have been produced to estimate the total installed capital cost of gasification systems and have been used in an economic model of gasification. This has been used in a sensitivity analysis to determine the factors which most affect the profitability of gasification. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given the economic conditions of late 1985, refuse gasification for the production of producer gas was found to be viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. At this throughput and above, the largest element of product gas cost is the feedstock cost, the cost element which is most variable.
Resumo:
Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.
Resumo:
The development of reliable, high powered plasma generators has resulted in many plasma processes being proposed as alternatives to existing pyrometallurgical technologies. This work evaluates the advantages and disadvantages of plasma systems by reviewing plasma generators, their integration with reactors and the process economics. Many plasma systems were shown to be technically and economically superior to existing technologies, but some of the plasma system advantages quoted in the literature were found to be impractical because of other system constraints. Process applications were limited by the power inputs available from plasma generators compared to AC electric furnaces. A series of trials were conducted where chromite and steelplant baghouse dusts were smelted in the Tetronics' 2.0 MW transferred arc/open bath reactor to confirm the operating characteristics of the plasma system and its economics. Chromite smelting was technical superior to submerged arc furnace technology, but the economics were unfavourable because of the limited power available from the water-cooled plasma torch and the high electrical energy consumption. A DC graphite electrode plasma furnace using preheated and prereduced chromite concentrates will compete economically with the submerged arc furnace. Ni, Cr and Mo were economically recovered from high alloy content steelplant dusts for recycling. Five Electric Arc Furnace dusts were smelted to produce a non-toxic residue and recover the contained zinc to an enriched zinc oxide product for recycling. It should be possible to condense the zinc vapour directly in a zinc splash condenser to increase the value of the product. Because of the limited power available from plasma generators, plasma processes will be most suitable for treating high and medium value materials such as Au, Pt, Mo, Ni, Ti, V, Cr etc at small production rates, heating metals in tundishes and ladles and remelting superalloy scrap. The treatment of environmentally hazardous waste materials is a particularly interesting application because of the additional financial incentives. Non-transferred arc plasma generators will be used for air and gas preheating in blast furnaces to reduce metallurgical coke consumptions.
Resumo:
Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.
Resumo:
This thesis has been concerned with obtaining evidence to explore the proposition that the provision of occupational health services as arranged at the present time represents a misallocation of resources. The research has been undertaken within the occupational health service of a large Midlands food factory. As the research progressed it became evident that questions were being raised about the nature and scope of occupational health as well as the contribution, in combating danger at work, that occupational health services can make to the health and safety team. These questions have been scrutinized in depth, as they are clearly important, and a resolution of the problem of the definition of occupational health has been proposed. I have taken the approach of attempting to identify specific objectives or benefits of occupational health activities so that it is possible to assess how far these objectives are being achieved. I have looked at three aspects of occupational health; audiometry, physiotherapy and pre-employment medical examinations as these activities embody crucial concepts which are common to all activities in an occupational health programme. A three category classification of occupational health activities is proposed such that the three activities provide examples within each category. These are called personnel therapy, personnel input screening and personnel throughput screening. I conclude that I have not shown audiometry to be cost-effective. My observations of the physiotherapy service lead me to support the suggestion that there is a decline in sickness absence rates due to physiotherapy in industry. With pre-employment medical examinations I have shown that the service is product safety oriented and that benefits are extremely difficult to identify. In regard to the three services studied, in the one factory investigated, and because of the immeasurability of certain activities, I find support for the proposition that the mix of occupational health services as provided at the present time represents a misallocation of resources.
Resumo:
This paper develops a structured method from the perspective of value to organise and optimise the business processes of a product servitised supply chain (PSSC). This method integrates the modelling tool of e3value with the associated value measurement, evaluation and analysis techniques. It enables visualisation, modelling and optimisation of the business processes of a PSSC. At the same time, the value co-creation and potential contribution to an organisation’s profitability can also be enhanced. The findings not only facilitate organisations that are attempting to adopt servitisation by helping avert any paradox, but also help a servitised organisation to identify the key business processes and clarify their influences to supply chain operations.
Resumo:
A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.