17 resultados para Process modeling

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to describe how the application of systems thinking to designing, managing and improving business processes has resulted in a new and unique holonic-based process modeling methodology know as process orientated holonic modeling. Design/methodology/approach: The paper describes key systems thinking axioms that are built upon in an overview of the methodology; the techniques are described using an example taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. These were produced in an 18 month project, using an action research approach, to improve quality and process efficiency. Findings: The findings of this research show that this new methodology can support process depiction and improvement in industrial sectors which are characterized by environments of high variety and low volume (e.g. projects; such as the design and manufacture of a radar system or a hybrid production process) which do not provide repetitive learning opportunities. In such circumstances, the methodology has not only been able to deliver holonic-based process diagrams but also been able to transfer strategic vision from top management to middle and operational levels without being reductionistic. Originality/value: This paper will be of interest to organizational analysts looking at large complex projects whom require a methodology that does not confine them to thinking reductionistically in "task-breakdown" based approaches. The novel ideas in this paper have great impact on the way analysts should perceive organizational processes. Future research is applying the methodology in similar environments in other industries. © Emerald Group Publishing Limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of systems thinking to designing, managing, and improving business processes has developed a new "holonic-based" process modeling methodology. The theoretical background and the methodology are described using examples taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. A key point of differentiation attributed to this methodology is that it allows a set of models to be produced without taking a task breakdown approach but instead uses systems thinking and a construct known as the "holon" to build process descriptions as a system of systems (i.e., a holarchy). The process-oriented holonic modeling methodology has been used for total quality management and business process engineering exercises in different industrial sectors and builds models that connect the strategic vision of a company to its operational processes. Exercises have been conducted in response to environmental pressures to make operations align with strategic thinking as well as becoming increasingly agile and efficient. This unique methodology is best applied in environments of high complexity, low volume, and high variety, where repeated learning opportunities are few and far between (e.g., large development projects). © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of recombinant therapeutic proteins is an active area of research in drug development. These bio-therapeutic drugs target nearly 150 disease states and promise to bring better treatments to patients. However, if new bio-therapeutics are to be made more accessible and affordable, improvements in production performance and optimization of processes are necessary. A major challenge lies in controlling the effect of process conditions on production of intact functional proteins. To achieve this, improved tools are needed for bio-processing. For example, implementation of process modeling and high-throughput technologies can be used to achieve quality by design, leading to improvements in productivity. Commercially, the most sought after targets are secreted proteins due to the ease of handling in downstream procedures. This chapter outlines different approaches for production and optimization of secreted proteins in the host Pichia pastoris. © 2012 Springer Science+business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theprocess of manufacturing system design frequently includes modeling, and usually, this means applying a technique such as discrete event simulation (DES). However, the computer tools currently available to apply this technique enable only a superficial representation of the people that operate within the systems. This is a serious limitation because the performance of people remains central to the competitiveness of many manufacturing enterprises. Therefore, this paper explores the use of probability density functions to represent the variation of worker activity times within DES models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported that high-speed communication network traffic exhibits both long-range dependence (LRD) and burstiness, which posed new challenges in network engineering. While many models have been studied in capturing the traffic LRD, they are not capable of capturing efficiently the traffic impulsiveness. It is desirable to develop a model that can capture both LRD and burstiness. In this letter, we propose a truncated a-stable LRD process model for this purpose, which can characterize both LRD and burstiness accurately. A procedure is developed further to estimate the model parameters from real traffic. Simulations demonstrate that our proposed model has a higher accuracy compared to existing models and is flexible in capturing the characteristics of high-speed network traffic. © 2012 Springer-Verlag GmbH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the impact of a human resource management (HRM) system, which integrates both content and process of human resource (HR) practices, on organizational performance, through collective employee reactions. The analysis is based on a sample of 1,250 Greek employees working in 133 public- and private-sector organizations, which operate in the present context of severe financial and economic crises. The findings of the structural equation modeling suggest that content and process are two inseparable faces of an HRM system that help to reveal a comprehensive picture of the HRM-organizational performance relationship. Based on the findings that collective employee reactions mediate the HRM content (i.e., organizational performance relationship) and HRM process moderates the HRM content (i.e., employee reactions relationship), the study has several theoretical and practice implications. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.