53 resultados para Probabilistic decision process model
em Aston University Research Archive
Resumo:
As levels of investment in advanced manufacturing systems increase, effective project management becomes ever more critical. This paper demonstrates how the model proposed by Mintzberg, Raisinghani and Theoret in 1976, which structures complicated strategic decision processes, can be applied to the design of new production systems for both descriptive and analytical research purposes. This paper sets a detailed case study concerning the design and development of an advanced manufacturing system within the Mintzberg decision model and so breaks down the decision sequence into constituent parts. It thus shows how a structured model can provide a framework for the researcher who wishes to study decision episodes in the design of manufacturing facilities in greater depth.
Resumo:
This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.
Resumo:
This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.
Resumo:
Knowledge management (KM) is an emerging discipline (Ives, Torrey & Gordon, 1997) and characterised by four processes: generation, codification, transfer, and application (Alavi & Leidner, 2001). Completing the loop, knowledge transfer is regarded as a precursor to knowledge creation (Nonaka & Takeuchi, 1995) and thus forms an essential part of the knowledge management process. The understanding of how knowledge is transferred is very important for explaining the evolution and change in institutions, organisations, technology, and economy. However, knowledge transfer is often found to be laborious, time consuming, complicated, and difficult to understand (Huber, 2001; Szulanski, 2000). It has received negligible systematic attention (Huber, 2001; Szulanski, 2000), thus we know little about it (Huber, 2001). However, some literature, such as Davenport and Prusak (1998) and Shariq (1999), has attempted to address knowledge transfer within an organisation, but studies on inter-organisational knowledge transfer are still much neglected. An emergent view is that it may be beneficial for organisations if more research can be done to help them understand and, thus, to improve their inter-organisational knowledge transfer process. Therefore, this article aims to provide an overview of the inter-organisational knowledge transfer and its related literature and present a proposed inter-organisational knowledge transfer process model based on theoretical and empirical studies.
Resumo:
Purpose – This paper describes research that has sought to create a formal and rational process that guides manufacturers through the strategic positioning decision. Design/methodology/approach – The methodology is based on a series of case studies to develop and test the decision process. Findings – A decision process that leads the practitioner through an analytical process to decide which manufacturing activities they should carryout themselves. Practical implications – Strategic positioning is concerned with choosing those production related activities that an organisations should carry out internally, and those that should be external and under the ownership and control of suppliers, partners, distributors and customers. Originality/value – This concept extends traditional decision paradigms, such as those associated with “make versus buy” and “outsourcing”, by looking at the interactions between manufacturing operations and the wider supply chain networks associated with the organisation.
Resumo:
Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced.
Resumo:
Aircraft manufacturing industries are looking for solutions in order to increase their productivity. One of the solutions is to apply the metrology systems during the production and assembly processes. Metrology Process Model (MPM) (Maropoulos et al, 2007) has been introduced which emphasises metrology applications with assembly planning, manufacturing processes and product designing. Measurability analysis is part of the MPM and the aim of this analysis is to check the feasibility for measuring the designed large scale components. Measurability Analysis has been integrated in order to provide an efficient matching system. Metrology database is structured by developing the Metrology Classification Model. Furthermore, the feature-based selection model is also explained. By combining two classification models, a novel approach and selection processes for integrated measurability analysis system (MAS) are introduced and such integrated MAS could provide much more meaningful matching results for the operators. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
The development of strategy remains a debate for academics and a concern for practitioners. Published research has focused on producing models for strategy development and on studying how strategy is developed in organisations. The Operational Research literature has highlighted the importance of considering complexity within strategic decision making; but little has been done to link strategy development with complexity theories, despite organisations and organisational environments becoming increasingly more complex. We review the dominant streams of strategy development and complexity theories. Our theoretical investigation results in the first conceptual framework which links an established Strategic Operational Research model, the Strategy Development Process model, with complexity via Complex Adaptive Systems theory. We present preliminary findings from the use of this conceptual framework applied to a longitudinal, in-depth case study, to demonstrate the advantages of using this integrated conceptual model. Our research shows that the conceptual model proposed provides rich data and allows for a more holistic examination of the strategy development process. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagation algorithm. We describe how this work relates to other quantile regression methods and apply the method on both synthetic and real data sets. The method is shown to be competitive with state of the art methods whilst allowing for the leverage of the full Gaussian process probabilistic framework.
Resumo:
This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
This paper explains how strategic planning is able to deliver strategic integration within organizations. While communication and participation within planning processes are perceived to have an integrative effect, we argue that these effects are unlikely to arise simply from bringing people together. Rather, we suggest that, given the varying interests of actors in different business units, integration will only arise from active negotiations and compromises between these actors. The paper is based upon a case of strategic planning in a multinational that was attempting to develop greater strategic integration across Europe. Drawing upon an activity theory framework, we examine how a common strategy emerges over time through modifications to the planning process and to different actors’ roles within it. The findings are used to develop a process model that shows how different business unit characteristics of planning experience and relative power shape different experiences of communication and participation activities and different processes for achieving integration. The paper concludes with a discussion of how this process model contributes to the literature on strategic planning, political processes of strategy-making, and strategy-as-practice.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.