3 resultados para Privilegis-Orihuela
em Aston University Research Archive
Resumo:
Purpose-To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods - A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results - The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611?nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion - The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool.
Resumo:
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.
Resumo:
Purpose - To generate a reflectance model of the fundus that allows an accurate non-invasive quantification of blood and pigments. Methods - A Monte Carlo simulation was used to produce a mathematical model of light interaction with the fundus at different wavelengths. The model predictions were compared with fundus images from normal volunteers in several spectral bands (peaks at 507, 525, 552, 585, 596 and 611nm). Th e model was then used to calculate the concentration and distribution of the known absorbing components of the fundus. Results - The shape of the statistical distribution of the image data generally corresponded to that of the model data; the model however appears to overestimate the reflectance of the fundus in the longer wavelength region.As the absorption by xanthophyll has no significant eff ect on light transport above 534nm, its distribution in the fundus was quantified: the wavelengths where both shape and distribution of image and model data matched (<553nm) were used to train a neural network which was then applied to every point in the image data. The xanthophyll distribution thus found was in agreement with published literature data in normal subjects. Conclusion - We have developed a method for optimising multi-spectral imaging of the fundus and a computer image analysis capable of estimating information about the structure and properties of the fundus. Th e technique successfully calculates the distribution of xanthophyll in the fundus of healthy volunteers. Further improvement of the model is required to allow the deduction of other parameters from images; investigations in known pathology models are also necessary to establish if this method is of clinical use in detecting early chroido-retinopathies, hence providing a useful screening and diagnostic tool.