2 resultados para Primary Electron Donor

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of melt stabilisers on the oxidative degradation of polyolefins (polypropylene, low density polyethylene) have been studied under a variety of processing conditions . The changes in the both chemical and physical properties of unstabilised polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. 2 ,6 ,3' ,5' -tetra-tert-butyl-4'-phenoxy-4-methylene-2, 5-cyclohexadiene-1- one (galvinoxyl), iodine, nitroxyl radicals and cupric stearate were found to be very efficient melt stabilisers particularly when processed in a restricted amount of air. The mechanisms of their melt stabilising action have been investigated and a common cyclical regenerative mechanism involving both chain-breaking electron acceptor (CB-A) and chain-breaking electron donor (CB-D) antioxidant activity was found to be involved in each case. 2,6,3',5'-tetra-tert-butyl-4'-hydroxy phenyl-4-rrethylene-2,5-cyclohexadiene- 1-one (hydrogalvinoxy1), 4-hydroxy, 2,2,6, 6-tetra methyl-N-hydroxy piperidine and hydrogen iodide were formed together with olefinic unsaturation in the substrates during the melt processing of the polymers containing galvinoxyl, 4-hydroxy, 2,2,6, 6-tetra methyl piperidine oxyl and iodine respectively. No bonding of the melt stabilisers to the polymers was found to occur. Cupric stearate was found to undergo a similar redox reaction during its action as a melt stabiliser with the formation of unsaturation in the polymer. Evidence for the above processes is presented. The behaviours of melt stabilisers in the subsequent thermal and photooxidation of polyolefins have also been studied. Galvinoxyl which is very effective under both mild and severe processing canditions has been found to be an effective antioxidant during thermal oxidation (oven ageing) and it is also moderately good. as a photo-stabiliser. Iodine and cupric stearate acted efficiently during melt stabilisation of polymers, however they were both ineffective as thermo-oxidative antioxidants and UV stabilisers. Although the melt stabilisation effectiveness of stable nitroxyl radicals (e.g. 4-hydroxy, 2,2,6,6-tetra methyl piperidineoxyl and Bis- (2,2,6 ,6-tetra methyl-4- piperidinyl-N-oxyl) sebacate) is not as high as that of galvinoxyl during processing particularly in excess of air, they have been found to be much more efficient as UV stabilisers for polyolefins. The reasons for this are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.