37 resultados para Pressure Drop

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents pressure distributions and fluid flow patterns on the shellside of a cylindrical shell-and-tube heat exchanger. The apparatus used was constructed from glass enabling direct observation of the flow using a dye release technique and had ten traversable pressure instrumented tubes permitting detailed pressure distributions to be obtained. The `exchanger' had a large tube bundle (278 tubes) and main flow areas typical of practical designs. Six geometries were studied: three baffle spacings both with and without baffle leakage. Results are also presented of three-dimensional modelling of shellside flows using the Harwell Laboratory's FLOW3D code. Flow visualisation provided flow patterns in the central plane of the bundle and adjacent to the shell wall. Comparison of these high-lighted significant radial flow variations. In particular, separated regions, originating from the baffle tips, were observed. The size of these regions was small in the bundle central plane but large adjacent to the shell wall and extended into the bypass lane. This appeared to reduce the bypass flow area and hence the bypass flow fraction. The three-dimensional flow modelling results were presented as velocity vector and isobar maps. The vector maps illustrated regions of high and low velocity which could be prone to tube vibration and fouling. Separated regions were also in evidence. A non-uniform crossflow was discovered with, in general, higher velocities in the central plane of the bundle than near the shell wall._The form of the isobar maps calculated by FLOW3D was in good agreement with experimental results. In particular, larger pressure drops occurred across the inlet than outlet of a crossflow region and were higher near the upstream than downstream baffle face. The effect of baffle spacing and baffle leakage on crossflow and window pressure drop measurements was identified. Agreement between the current measurements, previously obtained data and commonly used design correlations/models was, in general, poor. This was explained in terms of the increased understanding of shellside flow. The bulk of previous data, which dervies from small-scale rigs with few tubes, have been shown to be unrepresentative of typical commerical units. The Heat Transfer and Fluid Flow Service design program TASC provided the best predictions of the current pressure drop results. However, a number of simple one-dimensional models in TASC are, individually, questionable. Some revised models have been proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loss of coolant accidents (LOCA) in the primary cooling circuit of a nuclear reactor may result in damage to insulation materials that are located near to the leak. The insulation materials released may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fibre agglomerates (MWFA) maybe transported to the containment sump strainers mounted at the inlet of the emergency cooling pumps, where the insulation fibres may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fibre cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Thus, knowledge of transport characteristics of the damaged insulation materials in various scenarios is required to help plan for the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a LOCA. The study entails the generation of fibre agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this presentation is on the experiments performed that characterize the horizontal transport of MWFA, whereas the corresponding CFD simulations are described in an accompanying contribution (see abstract of Cartland Glover et al.). The experiments were performed a racetrack type channel that provided a near uniform horizontal flow. The channel is 0.1 wide by 1.2 m high with a straight length of 5 m and two bends of 0.5 m. The measurement techniques include particle imaging (both wide-angle and macro lens), concurrent particle image velocimetry, ultravelocimetry, laser detection sensors to sense the presence of absence of MWFA and pertinent measurements of the MWFA concentration and quiescent settling characteristics. The transport of the MWFA was observed at velocities of 0.1 and 0.25 m s-1 to verify numerical model behaviour in and just beyond expected velocities in the containment sump of a nuclear reactor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Local mass transfer coefficients were determined by using the electrochemical technique. A simple model of a heat exchanger with segmental nickel tube joined to p.v.c. rods replaced the exchanger tubes. Measurements were made for both no-Ieakage, semi-leakage and total leakage configurations. Baffle-spacings of 47.6 mm, 66.6 mm, 97 mm and 149.2 mm wer studied. Also studied were the overall exchanger pressure drops for each configuration. The comparison of the heat transfer data with this work showed good agreement at high flow rates for the no-leakage case, but the agreement became poor for lower flow rates and leakage configurations. This disagreement was explained by non-analogous driving forces existing in the two systems. The no-leakage data showed length-wise variation of transfer coefficients along the exchanger length. The end compartments showing transfer coefficients inferior by up to 26% compared to tbe internal compartments, depending on Reynolds number. With the introduction of leakage streams this variation however became smaller than the experimental accuracy. A model is outlined to show the characteristic behaviour of individual electrode segments within the compartment. This was able to discriminate between cross and window zones for the no- leakage case, but no such distinction could be made for the leakage case. A flow area was found which, when incorporated in the Reynolds number, enabled the correlation of baffle-cut and baffle-spacing parameters for the no-leakage case . This area is the free flow area determined at the baffle edge. Addition of the leakage area to this flow area resulted in correlation of all commercial leakage geometrical parameters. The procedures used to correlate the pressure drop data from a total of eighteen different configurations on a single curve are also outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presentation of the progress made in modelling fibre agglomerate transport in the racetrack channel. Fibre agglomerates can be generated through the disruption of insulation materials during LOCA in NPPs. The fibres can make their way to the containment sump strainers and lead to their blockage. This blockage can lead to an increase in the pressure drop acting across the strainers, which can lead to cavitation behind the strainer and in the recirculation pumps. This will lead to a loss of ECC water reaching the reactor. A small proportion of the fibres may also reach the reactor vessel. Therefore reliable numerical models of the three-dimensional flow behaviour of the fibres must be developed. The racetrack channel offers the chance to validate such models. The presentation describes the techniques involved and the results obtained from transient simulations of the whole channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A diffusion-controlled electrochemical mass transfer technique has been employed in making local measurements of shell-side coefficients in segmentally baffled shell and tube heat exchangers. Corresponding heat transfer data are predicted through the Chilton and Colburn heat and mass transfer analogy. Mass transfer coefficients were measured for baffle spacing lengths of individual tubes in an internal baffle compartment. Shell-side pressure measurements were also made. Baffle compartment average coefficients derived from individual tube coefficients are shown to be in good agreement with reported experimental bundle average heat transfer data for a heat exchanger model of similar geometry. Mass transfer coefficients of individual tubes compare favourably with those obtained previously by another mass transfer technique. Experimental data are reported for a variety of segmental baffle configurations over the shell-side Reynolds number range 100 to 42 000. Baffles with zero clearances were studied at three baffle cuts and two baffle spacings. Baffle geometry is shown to have a large effect on the distribution of tube coefficients within the baffle compartment. Fluid "jetting" is identified with some baffle configurations. No simple characteristic velocity is found to correlate zonal or baffle compartment average mass transfer data for the effect of both baffle cut and baffle spacing. Experiments with baffle clearances typical of commercial heat exchangers are also reported. The effect of leakage streams associated with these baffles is identified. Investigations were extended to double segmental baffles for which no data had previously been published. The similarity in the shell-side characteristics of this baffle arrangement and two parallel single segmental baffle arrangements is demonstrated. A general relationship between the shell-side mass transfer performance and pressure drop was indicated by the data for all the baffle configurations examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study has been made of the coalescence of secondary dispersions in beds of woven meshes. The variables investigated were superficial velocity, bed depth, mesh geometry and fibre material; the effects of presoaking the bed in the dispersed phase before operation were also considered. Equipment was design~d to generate a 0.1% phase ratio toluene in water dispersion whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and a novel holographic technique was developed to evaluate the mean diameter of the effluent secondary drops. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by Keller's equation which is based on a physical model similar to the internal structure of the meshes. Statistical analysis of two phase data produced a correlation, for each mesh tested, relating the pressure drop to superficial velocity and bed depth. The flow parameter evaluated from the single phase model is incorporated into a theoretical comparison of drop capture mechanisms which indicated that direct and indirect interception are predominant. The resulting equation for drop capture efficiericy is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles was formulated and verified by average saturation data. Based 6n the Blake-Kozeny equation, an expression is derived analytically to predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity, good agreement between experimental pressure drop data and the model predictions was obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the presentation the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Gorlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Gorlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented. Copyright © 2008 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with an open-core gasifier, a novel open-topped throated gasifier was designed and used. A sampling system was designed and installed to determine the water, tar and particular content of the raw product gas. This permitted evaluation of the effects of process parameters and reactor design on tar and particular production, although a large variation was found for the particulate measurements due to the capture of large particles. For both gasifiers, the gasification process was studied in order to identify and compare the mechanisms controlling the position and shape of the reaction zones. The stability of the reaction zone was found to be governed by the superficial gas velocity within the reactor. A superficial gas velocity below 0.2 Nms-1 resulted in a rising reaction zone in both gasifiers. Turndown is achieved when the rate of char production by flaming pyrolysis equals the rate of char gasification over a range of throughputs. A turndown ratio of 2:1 was achieved for the hybrid-throated gasifier, compared to 1.3:1 for the open-core. It is hypothesized that pyrolysis is a surface area phenomenon, and that in the hybrid gasifier the pyrolysis front can expand to form a dome-shape. The rate of char gasification is believed to increase as the depth of the gasification zone increases. Vibration of the open-core reactor bed decreased the bed pressure drop, reduced the voidage, aided solids flow and gave a minor improvement in the product gas energy content. Insulation improved the performance of both reactors by reducing heat losses resulting in a reduced air to feed ratio requirement. The hybrid gasifier gave a higher energy conversion efficiency, a higher product gas heating value, and a lower tar content than the open-core gasifier due to efficient gas mixing in a high temperature tar cracking region below the throat and reduced heat losses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. With the introduction of more efficient packings, novel packing materials (i.e. adsorbents) and new applications (i.e. flue gas desulphurisation); the aspect ratio (height to diameter) of such beds is decreasing. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base / free fluid interface. This study is based on a combined theoretical and modelling approach. The starting point is the Ergun Equation which is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been applied in a vectorial form so it can be applied to maldistributed and multi-directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid / bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The flow through the outlet of the duct below the bed can be controlled, permitting a rigorous investigation. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. This boundary condition is based on the logarithmic law for velocities near walls without restricting the velocity at the bed base to zero and is applied within a turbulence model. The flow in a curved bed section, which is three-dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant. As before, the relative amounts of gas flowing through the bed and duct outlet can be controlled. The model and improved understanding of the underlying physical phenomena form the basis for the development of new distributors and rigorous design methods for them.