8 resultados para Preservation of latex
em Aston University Research Archive
Resumo:
Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.
Resumo:
Protein oxidation can be perceived as essential for the control of intracellular signalling and gene expression on the one hand, but in contrast, a potentially cytotoxic hazard of aerobic life. Reduction and oxidation of thiol groups on specific cysteine residues can act as critical molecular switches, in modulating response to growth factors, apoptotic and inflammatory stimuli to name a few. Such oxidative reactions are likely to be transient and represent low levels of oxidative modification to a protein. Sustained oxidative stress conditions through absence of essential dietary antioxidant or low activity of endogenous enzyme scavengers can cause irreversible damage and loss of function. Such modifications are believed to be important in many diseases associated with ageing. Therefore, it has been postulated that diet may exert an influence on the steady state of protein oxidation and thus offer potential health benefits through preservation of normal protein function. In the present paper, the current evidence from in vivo studies on the effects of dietary antioxidants and oxidants on protein oxidation will be evaluated, and needs for future research will be highlighted.
Resumo:
The advent of DNA vaccines has heralded a new technology allowing the design and elicitation of immune responses more adequate for a wider range of pathogens. The formulation of these vaccines into the desired dosage forms extends their capability in terms of stability, routes of administration and efficacy. This thesis describes an investigation into the fabrication of plasmid DNA, the active principle of DNA vaccines, into microspheres, based on the tenet of an increased cellular uptake of microparticulate matter by phagocytic cells. The formulation of plasmid DNA into microspheres using two methods, is presented. Formulation of microspheric plasmid DNA using the double emulsion solvent evaporation method and a spray-drying method was explored. The former approach involves formation of a double emulsion, by homogenisation. This method produced microspheres of uniform size and smooth morphology, but had a detrimental effect on the formulated DNA. The spray-drying method resulted in microspheres with an improved preservation of DNA stability. The use of polyethylenimine (PEI) and stearylamine (SA) as agents in the microspheric formulation of plasmid DNA is a novel approach to DNA vaccine design. Using these molecules as model positively-charged agents, their influence on the characteristics of the microspheric formulations was investigated. PEI improved the entrapment efficiency of the plasmid DNA in microspheres, and has minimal effect on either the surface charge, morphology or size distribution of the formulations. Stearylamine effected an increase in the entrapment efficiency and stability of the plasmid DNA and its effect on the micropshere morphology was dependent on the method of preparation. The differences in the effects of the two molecules on microsphere formulations may be attributable to their dissimilar physico-chemical properties. PEI is water-soluble and highly-branched, while SA is hydrophobic and amphipathic. The positive charge of both molecules is imparted by amine functional groups. Preliminary data on the in vivo application of formulated DNA vaccine, using hepatitis B plasmid, showed superior humoral responses to the formulated antigen, compared with free (unformulated) antigen.
Resumo:
1. S-adenosyl-L-methionine (SAMe) had no effect on cytochrome C reduction by superoxide generated from xanthine oxidase except at high concentrations. This was due to direct inhibition of the enzyme. 2. SAMe inhibited the neutrophil respiratory burst , measured by luminol enhanced chemiluminescence, to FMLP and zymosan A but not to PMA. 3. Adenosine and methylthioadenosine (MTA) inhibited the respiratory burst elicited by FMLP. 4. SAMe inhibited the phagocytosis of latex particles by neutrophils at high concentrations but methionine and S-adenosyl L-homocysteine had no effect. 5. Treatment with SAMe had no effect on cell infiltration or PGE2 production in 6-day air pouches. 6. Treatment with SAMe at the optimum dose of 50mg/kg inhibited the early phases of carrageenan induced rat hind paw inflammation but had a lesser effect on the secondary response. The antiinflammatory effect was sustained after inhibiton of polyamine synthesis. 7. SAMe increased liver putrescine levels in the presence and absence of inflammation Spermidine levels were increased in the presence of inflammation but spermine levels were unaffected by any of the treatments. 8. MT A and adenosine increased liver putrescine and spermidine levels 9. Treatment with SAMe had no effect on the polyamine status of blood. lO.Treatment with SAMe had no effect on the levels of glutathione in liver or blood. 11.SAMe and MTA inhibited histamine and platelet-activating factor (PAF) induced hind paw inflammation but had no effect on inflammation induced by dextran, zymosan, compound 48/80, 5-hydroxytryptamine, arachidonic acid or glucose oxidase. MTA was more effective than SAMe. 12. PAP-induced rat hind paw inflammation was inhibited by isoprenaline and verapamil. Combinations of these drugs with SAMe or MT A had no further enhancement of effect. 13. Incubation of rat PMNLs with [14c ] SAMe increased the intracellular levels of S-adenosyl-L-homocysteine in a dose dependent manner, but had no effect on the intracellular levels of SAMe, adenosine or MT A. 14. Pharmacokinetic studies of plasma SAMe following a single dose of the drug (50mg/kg) i.p. demonstrated that SAMe is rapidly absorbed and metabolised
Resumo:
Purpose: To demonstrate the importance of OCT examination of fellow, normal eyes in unilateral nAMD follow up clinics. Methods: The authors present three cases of unilateral nAMD who were undergoing treatment with ranibizumab, in whom OCT evaluation of the previously unaffected, asymptomatic fellow eye allowed early diagnosis, treatment and preservation of vision. Fundus examination had previously failed to demonstrate abnormality. Results: Intravitreal anti-VEGF treatment for nAMD has caused a sharp increase in the number of subjects attending macular clinics, frequently overburdening the system. It may sometimes be tempting for hospitals to reduce the workload by for example, concentrating only on OCT examination of the affected eye in cases of unilateral nAMD. The three reported cases demonstrate that OCT scanning of the fellow, previously unaffected eye is essential in detecting asymptomatic nAMD, which gives a better chance of preservation of vision. Conclusions: Patients with unilateral neovascular AMD undergoing review in macular clinics should always undergo OCT scanning of normal, fellow eyes, as otherwise asymptomatic, “invisible” choroidal neovascular membranes may be missed.
Resumo:
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space-time, a novel hybrid atomistic-fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. © 2014 The Author(s) Published by the Royal Society.
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al