5 resultados para Pregnancy-specific gycoprotein
em Aston University Research Archive
Resumo:
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.
Resumo:
Pre-eclampsia, a pregnancy-specific multi-organ syndrome characterized by widespread endothelial damage, is a new risk factor for cardiovascular disease. No therapies exist to prevent or treat this condition, even to achieve a modest improvement in pregnancy length or birth weight. Co-administration of soluble VEGFR-1 [VEGF (vascular endothelial growth factor) receptor-1; more commonly known as sFlt-1 (soluble Fms-like tyrosine kinase-1)] and sEng (soluble endoglin) to pregnant rats elicits severe pre-eclampsia-like symptoms. These two anti-angiogenic factors are increased dramatically prior to the clinical onset of pre-eclampsia and are quite possibly the 'final common pathway' responsible for the accompanying signs of hypertension and proteinuria as they can be reversed by VEGF administration in animal models. HO-1 (haem oxygenase-1), an anti-inflammatory enzyme, and its metabolite, CO (carbon monoxide), exert protective effects in several organs against oxidative stimuli. In a landmark publication, we showed that the HO-1 pathway inhibits sFlt-1 and sEng in cultured cells and human placental tissue explants. Both CO and NO (nitric oxide) promote vascular homoeostasis and vasodilatation, and activation of VEGFR-1 or VEGFR-2 induced eNOS (endothelial nitric oxide synthase) phosphorylation, NO release and HO-1 expression. Our studies established the HO-1/CO pathway as a negative regulator of cytokine-induced sFlt-1 and sEng release and eNOS as a positive regulator of VEGF-mediated vascular morphogenesis. These findings provide compelling evidence for a protective role of HO-1 in pregnancy and identify it as a target for the treatment of pre-eclampsia. Any agent that is known to up-regulate HO-1, such as statins, may have potential as a therapy. Any intervention achieving even a modest prolongation of pregnancy or amelioration of the condition could have a significant beneficial health impact worldwide.
Resumo:
Human and animal studies suggest that obesity in adulthood may have its origins partly during prenatal development. One of the underlying causes of obesity is the perturbation of hypothalamic mechanisms controlling appetite. We determined mRNA levels of genes that regulate appetite, namely neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and the leptin receptor isoform Ob-Rb, in the hypothalamus of adult mouse offspring from pregnant dams fed a protein-restricted diet, and examined whether mismatched post-weaning high-fat diet altered further expression of these gene transcripts. Pregnant MF1 mice were fed either normal protein (C, 18% casein) or protein-restricted (PR, 9% casein) diet throughout pregnancy. Weaned offspring were fed to adulthood a high-fat (HF; 45% kcal fat) or standard chow (21% kcal fat) diet to generate the C/HF, C/C, PR/HF and PR/C groups. Food intake and body weight were monitored during this period. Hypothalamic tissues were collected at 16 weeks of age for analysis of gene expression by real time RT-PCR. All HF-fed offspring were observed to be heavier vs. C groups regardless of the maternal diet during pregnancy. In the PR/HF males, but not in females, daily energy intake was reduced by 20% vs. the PR/C group (p <0.001). In PR/HF males, hypothalamic mRNA levels were lower vs. the PR/C group for NPY (p <0.001) and Ob-Rb (p <0.05). POMC levels were similar in all groups. In females, mRNA levels for these transcripts were similar in all groups. Our results suggest that adaptive changes during prenatal development in response to maternal dietary manipulation may have long-term sex-specific consequences on the regulation of appetite and metabolism following post-weaning exposure to an energy-rich nutritional environment. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.
Resumo:
In recent years, English welfare and health policy has started to include pregnancy within the foundation stage of child development. The foetus is also increasingly designated as ‘at risk’ from pregnant women. In this article, we draw on an analysis of a purposive sample of English social and welfare policies and closely related advocacy documents to trace the emergence of neuroscientific claims-making in relation to the family. In this article, we show that a specific deterministic understanding of the developing brain that only has a loose relationship with current scientific evidence is an important component in these changes. We examine the ways in which pregnancy is situated in these debates. In these debates, maternal stress is identified as a risk to the foetus; however, the selective concern with women living in disadvantage undermines biological claims. The policy claim of neurological ‘critical windows’ also seems to be influenced by social concerns. Hence, these emerging concerns over the foetus’ developing brain seem to be situated within the gendered history of policing women’s pregnant bodies rather than acting on new insights from scientific discoveries. By situating these developments within the broader framework of risk consciousness, we can link these changes to wider understandings of the ‘at risk’ child and intensified surveillance over family life.