7 resultados para Prediction techniques

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes how modern machine learning techniques can be used in conjunction with statistical methods to forecast short term movements in exchange rates, producing models suitable for use in trading. It compares the results achieved by two different techniques, and shows how they can be used in a complementary fashion. The paper draws on experience of both inter- and intra-day forecasting taken from earlier studies conducted by Logica and Chemical Bank Quantitative Research and Trading (QRT) group's experience in developing trading models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Customer Base Analysis is perhaps the first stage of analysis in customer value, aiming to predict purchase frequency and customer lifecycle. An important part of the customer purchase frequency and its retention has to do with the service upgrade. Many models have tried to predict purchase frequency as well as upgrading. The comparison of these models seems important to provide academics with a picture of the current situation. The purpose of this research is to evaluate how models can predict service upgrade among a customer database of an online DVD rental company and suggest an alternative based on data mining techniques and data on historical transactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunoinformatics is the application of informatics techniques to molecules of the immune system. One of its principal goals is the effective prediction of immunogenicity, be that at the level of epitope, subunit vaccine, or attenuated pathogen. Immunogenicity is the ability of a pathogen or component thereof to induce a specific immune response when first exposed to surveillance by the immune system, whereas antigenicity is the capacity for recognition by the extant machinery of the adaptive immune response in a recall response. In thisbook, we introduce these subjects and explore the current state of play in immunoinformatics and the in silico prediction of immunogenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premium Intraocular Lenses (IOLs) such as toric IOLs, multifocal IOLs (MIOLs) and accommodating IOLs (AIOLs) can provide better refractive and visual outcomes compared to standard monofocal designs, leading to greater levels of post-operative spectacle independence. The principal theme of this thesis relates to the development of new assessment techniques that can help to improve future premium IOL design. IOLs designed to correct astigmatism form the focus of the first part of the thesis. A novel toric IOL design was devised to decrease the effect of toric rotation on patient visual acuity, but found to have neither a beneficial or detrimental impact on visual acuity retention. IOL tilt, like rotation, may curtail visual performance; however current IOL tilt measurement techniques require the use of specialist equipment not readily available in most ophthalmological clinics. Thus a new idea that applied Pythagoras’s theory to digital images of IOL optic symmetricality in order to calculate tilt was proposed, and shown to be both accurate and highly repeatable. A literature review revealed little information on the relationship between IOL tilt, decentration and rotation and so this was examined. A poor correlation between these factors was found, indicating they occur independently of each other. Next, presbyopia correcting IOLs were investigated. The light distribution of different MIOLs and an AIOL was assessed using perimetry, to establish whether this could be used to inform optimal IOL design. Anticipated differences in threshold sensitivity between IOLs were not however found, thus perimetry was concluded to be ineffective in mapping retinal projection of blur. The observed difference between subjective and objective measures of accommodation, arising from the influence of pseudoaccommodative factors, was explored next to establish how much additional objective power would be required to restore the eye’s focus with AIOLs. Blur tolerance was found to be the key contributor to the ocular depth of focus, with an approximate dioptric influence of 0.60D. Our understanding of MIOLs may be limited by the need for subjective defocus curves, which are lengthy and do not permit important additional measures to be undertaken. The use of aberrometry to provide faster objective defocus curves was examined. Although subjective and objective measures related well, the peaks of the MIOL defocus curve profile were not evident with objective prediction of acuity, indicating a need for further refinement of visual quality metrics based on ocular aberrations. The experiments detailed in the thesis evaluate methods to improve visual performance with toric IOLs. They also investigate new techniques to allow more rapid post-operative assessment of premium IOLs, which could allow greater insights to be obtained into several aspects of visual quality, in order to optimise future IOL design and ultimately enhance patient satisfaction.