70 resultados para Prediction error method

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The replica method, developed in statistical physics, is employed in conjunction with Gallager's methodology to accurately evaluate zero error noise thresholds for Gallager code ensembles. Our approach generally provides more optimistic evaluations than those reported in the information theory literature for sparse matrices; the difference vanishes as the parity check matrix becomes dense.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To ascertain the agreement level between intra-operative refraction using a prototype surgical Hartmann-Shack aberrometer and subjective refraction a month later. Methods: Fifty-four consecutive patients had their pseudophakic refractive measured with the aberrometer intra-operatively at the end of their cataract surgery. A masked optometrist performed subjective refraction 4 weeks later. The two sets of data were then analysed for correlation. Results: The mean spherical equivalent was −0.14 ± 0.37 D (Range: −1.41 to +1.72 D) with the prototype aberrometer and −0.34 ± 0.32 (−1.64 to +1.88 D) with subjective refraction. The measurements positively correlated to a very high degree (r =+0.81, p < 0.01). In 84.3% of cases the two measurements were within 0.50D of each other. Conclusion: The aberrometer can verify the aimed refractive status of the eye intraoperatively to avoid a refractive surprise. The aberrometer is a useful tool for real time assessment of the ocular refractive status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel method for prediction of the onset of a spontaneous (paroxysmal) atrial fibrilation episode by representing the electrocardiograph (ECG) output as two time series corresponding to the interbeat intervals and the lengths of the atrial component of the ECG. We will then show how different entropy measures can be calulated from both of these series and then combined in a neural network trained using the Bayesian evidence procedure to form and effective predictive classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the performance of parity check codes using the mapping onto spin glasses proposed by Sourlas. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C parity checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K?8 when the code rate K/C is finite. We then examine the finite temperature case to asses the use of simulated annealing methods for decoding, study the performance of the finite K case and extend the analysis to accommodate different types of noisy channels. The analogy between statistical physics methods and decoding by belief propagation is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of Gallager's error-correcting code is investigated via methods of statistical physics. In this method, the transmitted codeword comprises products of the original message bits selected by two randomly-constructed sparse matrices; the number of non-zero row/column elements in these matrices constitutes a family of codes. We show that Shannon's channel capacity is saturated for many of the codes while slightly lower performance is obtained for others which may be of higher practical relevance. Decoding aspects are considered by employing the TAP approach which is identical to the commonly used belief-propagation-based decoding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact solution to a family of parity check error-correcting codes is provided by mapping the problem onto a Husimi cactus. The solution obtained in the thermodynamic limit recovers the replica-symmetric theory results and provides a very good approximation to finite systems of moderate size. The probability propagation decoding algorithm emerges naturally from the analysis. A phase transition between decoding success and failure phases is found to coincide with an information-theoretic upper bound. The method is employed to compare Gallager and MN codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite message length for an ensemble of Gallager's error correcting codes. We follow Gallager's approach of upper-bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature. The relation between the methods used and those presented in the information theory literature are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of symmetric channels with real outputs. Results are presented for several regular Gallager code constructions.