9 resultados para Predicting Body Density

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect. The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes. Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g. amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body and assess the stimulation levels are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimization of a sum-of-squares or cross-entropy error function leads to network outputs which approximate the conditional averages of the target data, conditioned on the input vector. For classifications problems, with a suitably chosen target coding scheme, these averages represent the posterior probabilities of class membership, and so can be regarded as optimal. For problems involving the prediction of continuous variables, however, the conditional averages provide only a very limited description of the properties of the target variables. This is particularly true for problems in which the mapping to be learned is multi-valued, as often arises in the solution of inverse problems, since the average of several correct target values is not necessarily itself a correct value. In order to obtain a complete description of the data, for the purposes of predicting the outputs corresponding to new input vectors, we must model the conditional probability distribution of the target data, again conditioned on the input vector. In this paper we introduce a new class of network models obtained by combining a conventional neural network with a mixture density model. The complete system is called a Mixture Density Network, and can in principle represent arbitrary conditional probability distributions in the same way that a conventional neural network can represent arbitrary functions. We demonstrate the effectiveness of Mixture Density Networks using both a toy problem and a problem involving robot inverse kinematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macular pigment (MP) is the collective name for three carotenoids, lutein, zeaxanthin and meso-zeaxanthin, which are found at high concentrations in the central macula. The macular carotenoids, like all carotenoids, are entirely of dietary origin. The term ‘macular pigment optical density’ (MPOD) refers to the peak concentration of MP in the retina, which varies from one individual to the next and is measurable in vivo. On account of its blue-light-filtering and antioxidant properties, MP has become a subject of interest with respect to age-related macular degeneration (AMD), the hypothesis being that MP helps to protect against AMD; the higher the MPOD, the lower the risk for AMD. Recently, a new MPOD-measuring device, the MPS 9000 (MPS), entered the ophthalmic market. Using this device, the research described here aimed to contribute new information to the MP literature. A second MPOD instrument, the Macular Pigment Reflectometer, was also used at times, but a reliability study (included in the thesis) demonstrated that it was unsuitable for use on its own. First, a series of exploratory investigations were undertaken to maximize the accuracy and consistency of MPOD measurements taken with the MPS; a protocol was established that substantially improved repeatability. Subsequently, a series of MPOD-based studies were conducted on anisometropia, South Asian race, blue-light-filtering contact lenses, and dietary modification with kale. The principle findings were as follows: interocular MPOD differences were not attributable to interocular refractive error differences; young adults of South Asian origin had significant gender-related MPOD differences (males>females, p<0.01), and they also had significantly higher MPOD than Caucasians (p<0.0005); wearing blue-light-filtering contact lenses for eight months did not affect MPOD; and dietary modification with kale for 16 weeks did not increase MPOD. This body of research adds new insights to MP knowledge, which in turn may contribute to MP knowledge in the context of AMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To assess the relationship between macular pigment optical density (MPOD) and blood markers for antioxidant defense in otherwise healthy volunteers. Methods. Forty-seven healthy volunteers were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. The level of MPOD was measured using heterochromatic flicker photometry. Systemic blood pressure (BP) parameters, heart rate (HR), body mass index (BMI), and plasma levels of total, HDL, and LDL cholesterol and triglycerides (TGs) were also determined. Results. A simple correlation model revealed that the level of MPOD correlated significantly and positively with both GSH (P < 0.001) and t-GSH (P < 0.001) levels but not with those of GSSG (P > 0.05). Age, sex, systemic BP parameters, HR, BMI, and plasma levels of cholesterol and TGs did not have any influence on either MPOD or glutathione levels (all P > 0.05). In addition, a forward stepwise multiple regression analysis showed MPOD to have a significantly and independent correlation with GSH levels (ß = 0.63; P < 0.001). Conclusions. In otherwise healthy older individuals, there is a positive correlation between local and systemic antioxidant defense mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density of Lewy bodies (LB), senile plaques (SP), and neurofibrillary tangles (NFT) was studied in the temporal lobe in four patients diagnosed with ‘pure’ dementia with Lewy bodies (DLB) and eight patients diagnosed with DLB with associated Alzheimer’s disease (DLB/AD). In both patient groups, the density of LB was greatest in the lateral occipitotemporal gyrus (LOT) and least in areaas CA1 and CA4 of the hippocampus. In DLB/AD, the densities of SP and NFT were greatest in the cortical regions and in area CA1 of the hippocampus respectively. Mean LB densities in the temporal lobe were similar in ‘pure’ DLB and DLB/AD patients but mean SP and NFT densities were greater in DLB/AD. No significant correlations were observed between the densities of LB, SP and NFT in any brain region. The data suggest that in the temporal lobe LB and SP/NFT are distributed differently; SP and NFT in DLB/AD are distributed similarly to ‘pure’ AD and also that LB and AD pathologies appear to develop independently. Hence, the data support the hypothesis that some cases of DLB combine the features of DLB and AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the investigation of the effects of ocular supplements with different levels of nutrients on the macular pigment optical density (MPOD) in participants with healthy eyes. Abstract A review of the literature highlighted that ocular supplements are produced in various combinations of nutrients and concentrations. The ideal concentrations of nutrients such as lutein (L) have not been established. It was unclear whether different stages of eye disease require different concentrations of key nutrients, leading to the design of this study. The primary aim was to determine the effects of ocular supplements with different concentrations of nutrients on the MPOD of healthy participants. The secondary aim was to determine L and zeaxanthin (Z) intake at the start and end of the study through completion of food diaries. The primary study was split into two experiments. Experiment 1 was an exploratory study to determine sample size and experiment 2 the main study. Statistical power was calculated and a sample size of 38 was specified. Block stratification for age, gender and smoking habit was applied and from 101 volunteers 42 completed the study, 31 with both sets of food diaries. Four confounders were accounted for in the design of the study; gender, smoking habit, age and diet. Further factors that could affect comparability of results between studies were identified during the study and were not monitored; ethnicity, gastro-intestinal health, alcohol intake, body mass index and genetics. Comparisons were made between the sample population and the Sheffield general population according to recent demographic results in the public domain. Food diaries were analysed and shown to have no statistical difference when comparing baseline to final results. The average L and Z intake for the 31 participants who returned both sets of food diaries was initially 1.96mg and 1.51mg for the final food diaries. The effect of the two ocular supplements with different levels of xanthophyll (6mg lutein/zeaxanthin and 10mg lutein only) on MPOD was not significantly different over a four-month period.