5 resultados para Predicted Distribution Data

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clustering of cellular neurofibrillary tangles (NFT) was studied in the cerebral cortex and hippocampus in cases of Alzheimer’s disease (AD) using a regression method. The objective of the study was to test the hypothesis that clustering of NFTs reflects the degeneration of the cortico-cortical pathways. In 25/38 (66%) of analyses of individual brain areas, a significant peak to trough and peak to peak distance was obtained suggesting that the clusters of NFTs were regularly distributed in bands parallel to the tissue boundary. In analyses of cortical tissues with regularly distributed clusters, peak to peak distance was between 1000 and 1600 microns in 13/24 (54%) of analyses, >1600 microns in 10/24 (42%) and <1000 microns in 1/24 (4%) of analyses. A regular distribution of NFT clusters was less evident in the CA sectors of the hippocampus than in the cortex. Hence, in a significant proportion of brain areas, the spacing of NFT clusters along the cerebral cortex was consistent with the predicted distribution of the cells of origin of specific cortico-cortical projections. However, in many brain regions, the sizes of the NFT clusters were larger than predicted which may be attributable to the spread of NFTs to adjacent groups of cells as the disease progresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Alzheimer's disease (AD) and Down's syndrome (DS), the size frequency distribution of the beta-amyloid (Abeta) deposits can be described by a log-normal model and may indictae the growth of the deposits. This study determined the size frequency distribution of the Abeta deposits in the temporal lobe in 8 casaes of dementia with Lewy bodies (DLB) with associated AD pathology (DLB/AD. The size distributions of Abeta deposits were unimodal and positively skewed; the mean size of deposi and the degree of skew varying with deposit type and brain region. Size distributions of the primitive deposits had lower means and were less skewed compared with the diffuse and classic deposits. In addition, size distributions in the hippocampus and parahippocampal gyrus (PHG) had larger means and a greater degree of skew compared with other cortical gyri. All size distributions deviated significantly from a log-normal model. There were more Abeta deposits than expected in the smaller size classes and fewer than expected near the mean and in the larger size classes. The data suggest thatthe pattern of growth of the Abeta deposits in DLB/AD depends both on deposit morphology and brain area. In addition, Abeta deposits in DLB appear to grow to within a more restricted size range than predicted and hence, to have less potential for growth compared with cases of 'pure' AD and DS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.